On One Approach to the Numerical Solution of a Coefficient Inverse Problem

被引:0
|
作者
Albu, A. F. [1 ]
Evtushenko, Yu G. [1 ]
Zubov, V., I [1 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
coefficient inverse problems; nonlinear problems; heat equation; optimal control; numerical optimization methods; fast automatic differentiation;
D O I
10.1134/S1064562421040025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approach to solving the problem of determining the thermal conductivity coefficient of a substance based on the results of observing the dynamics of the temperature field is proposed. The effectiveness of the proposed approach is based on the application of the modern fast automatic differentiation methodology. The required thermal conductivity coefficient is determined from the solution of the formulated optimal control problem.
引用
收藏
页码:208 / 211
页数:4
相关论文
共 50 条
  • [21] Numerical solution of EEG inverse problem
    Hoffmann, C.
    Popov, A.M.
    Pevtsov, S.E.
    Fedulova, I.A.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 2004, (04): : 16 - 27
  • [22] Numerical solution for an inverse variational problem
    Garralda-Guillem, A., I
    Montiel Lopez, P.
    OPTIMIZATION AND ENGINEERING, 2021, 22 (04) : 2537 - 2552
  • [23] Numerical solution of an inverse filtration problem
    Vabishchevich, P. N.
    Vasil'ev, V. I.
    Vasil'eva, M. V.
    Nikiforov, D. Ya.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (06) : 777 - 786
  • [24] A NUMERICAL SOLUTION OF AN INVERSE PARABOLIC PROBLEM
    Pourgholi, R.
    Abtahi, M.
    Tabasi, S. H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2012, 2 (02): : 195 - 209
  • [25] Numerical solution for an inverse variational problem
    A. I. Garralda-Guillem
    P. Montiel López
    Optimization and Engineering, 2021, 22 : 2537 - 2552
  • [26] A numerical solution technique for a one-dimensional inverse nonlinear parabolic problem
    Shidfar, A.
    Fakhraie, M.
    Pourgholi, R.
    Ebrahimi, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 308 - 315
  • [27] A METHOD FOR THE NUMERICAL-SOLUTION OF THE ONE-DIMENSIONAL INVERSE STEFAN PROBLEM
    REEMTSEN, R
    KIRSCH, A
    NUMERISCHE MATHEMATIK, 1984, 45 (02) : 253 - 273
  • [28] Numerical solution of a one-dimensional inverse problem by the discontinuous Galerkin method
    Epshteyn, Y.
    Khan, T.
    Riviere, B.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 1989 - 2000
  • [29] A GLOBALLY CONVERGENT NUMERICAL METHOD FOR A COEFFICIENT INVERSE PROBLEM
    Beilina, Larisa
    Klibanov, Michael V.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01): : 478 - 509
  • [30] Stable numerical solution of an inverse coefficient problem for a time fractional reaction-diffusion equation
    Babaei, Afshin
    Banihashemi, Seddigheh
    Damirchi, Javad
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 365 - 383