Adaptive pixon represented segmentation (APRS) for 3D MR brain images based on mean shift and Markov random fields

被引:8
|
作者
Lin, Lei [2 ,3 ,4 ,5 ]
Garcia-Lorenzo, Daniel [3 ,4 ,5 ]
Li, Chong [2 ,6 ]
Jiang, Tianzi [1 ]
Barillot, Christian [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, LIAMA Ctr Computat Med, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[3] IRISA, INRIA, VisAGeS Unit Project, F-35042 Rennes, France
[4] Univ Rennes 1, CNRS, IRISA, UMR 6074, F-35042 Rennes, France
[5] IRISA, INSERM, INRIA, VisAGeS U746 Unit Project, F-35042 Rennes, France
[6] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
MRI segmentation; Markov random field; Adaptive mean shift; Pixon-representation; EM algorithm; MULTIPLE-SCLEROSIS LESIONS; TISSUE CLASSIFICATION; CLUSTERING-ALGORITHM; MODEL;
D O I
10.1016/j.patrec.2011.02.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we proposed an adaptive pixon represented segmentation (APRS) algorithm for 3D magnetic resonance (MR) brain images. Different from traditional method, an adaptive mean shift algorithm was adopted to adaptively smooth the query image and create a pixon-based image representation. Then K-means algorithm was employed to provide an initial segmentation by classifying the pixons in image into a predefined number of tissue classes. By using this segmentation as initialization, expectation-maximization (EM) iterations composed of bias correction, a priori digital brain atlas information, and Markov random field (MRF) segmentation were processed. Pixons were assigned with final labels when the algorithm converges. The adoption of bias correction and brain atlas made the current method more suitable for brain image segmentation than the previous pixon based segmentation algorithm. The proposed method was validated on both simulated normal brain images from BrainWeb and real brain images from the IBSR public dataset. Compared with some other popular MRI segmentation methods, the proposed method exhibited a higher degree of accuracy in segmenting both simulated and real 3D MRI brain data. The experimental results were numerically assessed using Dice and Tanimoto coefficients. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1036 / 1043
页数:8
相关论文
共 50 条
  • [31] A novel 3D Partitioned Active Shape Model for segmentation of brain MR images
    Zhao, Z
    Aylward, SR
    Teoh, EK
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 1, 2005, 3749 : 221 - 228
  • [32] Segmentation of brain 3D MR images using level sets and dense registration
    Baillard, C
    Hellier, P
    Barillot, C
    MEDICAL IMAGE ANALYSIS, 2001, 5 (03) : 185 - 194
  • [33] Super-resolution of 3D MR images and its application to brain segmentation
    Iwamoto, Yutaro
    Han, Xian-Hua
    Shiino, Akihiko
    Chen, Yen-Wei
    2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016), 2016, : 838 - 841
  • [34] Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation
    Barra, V
    Boire, JY
    JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 2000, 11 (03): : 267 - 278
  • [35] Adaptive volumetric texture segmentation based on Gaussian Markov random fields features
    Almakady, Yasseen
    Mahmoodi, Sasan
    Bennett, Michael
    PATTERN RECOGNITION LETTERS, 2020, 140 : 101 - 108
  • [36] Segmentation of MR Brain Images Through Hidden Markov Random Field and Hybrid Metaheuristic Algorithm
    Pham, Thuy Xuan
    Siarry, Patrick
    Oulhadj, Hamouche
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 6507 - 6522
  • [37] 3D CLASSIFICATION OF CROSSROADS FROM MULTIPLE AERIAL IMAGES USING MARKOV RANDOM FIELDS
    Kosov, S.
    Rottensteiner, F.
    Heipke, C.
    Leitloff, J.
    Hinz, S.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 479 - 484
  • [38] Integration of confidence information by Markov random fields for reconstruction of underwater 3D acoustic images
    Murino, V
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, 1223 : 475 - 490
  • [39] Unsupervised segmentation of 3-D brain MR images
    Lee, CH
    Huh, S
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXI, 1998, 3460 : 687 - 694
  • [40] Segmentation of ischemic stroke lesion from 3d mr images using random forest
    Anjali Gautam
    Balasubramanian Raman
    Multimedia Tools and Applications, 2019, 78 : 6559 - 6579