On p-Optimal Proof Systems and Logics for PTIME

被引:0
|
作者
Chen, Yijia [1 ]
Flum, Joerg [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai, Peoples R China
[2] Albert-Ludwigs Universitat Freiburg, Matemat Inst, Freiburg, Germany
关键词
COMPLETE-SETS; COMPLEXITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that TAUT has a p-optimal proof system if and only if a logic related to least fixed-point logic captures polynomial time on all finite structures. Furthermore, we show that TAUT has no effective p-optimal proof system if NTIME(h(O(1))) not subset of DIIME(h(O(logh))) for every time constructible and increasing function h.
引用
收藏
页码:321 / +
页数:2
相关论文
共 50 条
  • [21] Optimal Acceptors and Optimal Proof Systems
    Hirsch, Edward A.
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2010, 6108 : 28 - 39
  • [22] CUT-FREE PROOF SYSTEMS FOR GEACH LOGICS
    Fitting, Melvin
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2015, 2 (02): : 17 - 64
  • [23] On the relation of resolution and tableaux proof systems for description logics
    Hustadt, U
    Schmidt, RA
    IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, 1999, : 110 - 115
  • [24] Derivatives pricing via p-optimal martingale measures:: Some extreme cases
    Santacroce, Marina
    JOURNAL OF APPLIED PROBABILITY, 2006, 43 (03) : 634 - 651
  • [25] Horn Knowledge Bases in Regular Description Logics with PTIME Data Complexity
    Nguyen, Linh Anh
    FUNDAMENTA INFORMATICAE, 2010, 104 (04) : 349 - 384
  • [26] Optimal communication logics in networked control systems
    Xu, YG
    Hespanha, JP
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3527 - 3532
  • [27] Decomposition proof systems for gödel-dummett logics
    Avron A.
    Konikowska B.
    Studia Logica, 2001, 69 (2) : 197 - 219
  • [28] PROOF SYSTEMS FOR VARIOUS FDE-BASED MODAL LOGICS
    Drobyshevich, Sergey
    Wansing, Heinrich
    REVIEW OF SYMBOLIC LOGIC, 2020, 13 (04): : 720 - 747
  • [29] The p-optimal martingale measure and its asymptotic relation with the minimal-entropy martingale measure
    Grandits, P
    BERNOULLI, 1999, 5 (02) : 225 - 247
  • [30] A semimartingale backward equation related to the p-optimal martingale measure and the lower price of a contingent claim
    Mania, M
    Santacroce, M
    Tevzadze, R
    STOCHASTIC PROCESSES AND RELATED TOPICS, 2002, 12 : 189 - 212