The Chow ring of the moduli space of abelian threefolds

被引:0
|
作者
Van Der Geer, G [1 ]
机构
[1] Univ Amsterdam, Fac WINS, NL-1018 TV Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we determine the structure of the Chow ring of the Delaunay-Voronoi compactification (A) over tilde(3) of the moduli space of principally polarized abelian threefolds. This compactification was introduced by Namikawa and studied by Tsushima. We shall use equivariant classes on level coverings of (A) over tilde(3). We also compare this ring with the Chow ring of the moduli space of stable genus 3 curves as determined by Faber.
引用
收藏
页码:753 / 770
页数:18
相关论文
共 50 条
  • [41] On the dimension of voisin sets in the moduli space of abelian varieties
    Colombo, E.
    Naranjo, J. C.
    Pirola, G. P.
    MATHEMATISCHE ANNALEN, 2021, 381 (1-2) : 91 - 104
  • [42] Cohomology of mapping class groups and the abelian moduli space
    Andersen, Jorgen Ellegaard
    Villemoes, Rasmus
    QUANTUM TOPOLOGY, 2012, 3 (3-4) : 359 - 376
  • [43] The moduli space of real Abelian varieties with level structure
    Goresky, M
    Tai, YS
    COMPOSITIO MATHEMATICA, 2003, 139 (01) : 1 - 27
  • [44] On Chow Rings of Quiver Moduli
    Belmans, Pieter
    Franzen, Hans
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10255 - 10272
  • [45] CHOW GROUP OF CERTAIN TYPES OF FANO THREEFOLDS
    BLOCH, S
    MURRE, JP
    COMPOSITIO MATHEMATICA, 1979, 39 (01) : 47 - 105
  • [46] A calculus for monomials in Chow group of zero cycles in the moduli space of stable curves
    Qi, Jiayue
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2020, 54 (03): : 91 - 99
  • [47] Construction of non-Abelian walls and their complete moduli space
    Isozumi, Y
    Nitta, M
    Ohashi, K
    Sakai, N
    PHYSICAL REVIEW LETTERS, 2004, 93 (16) : 161601 - 1
  • [48] Pauli equation for non-Abelian dyons in moduli space
    Purohit, PP
    Pandey, VP
    Rajput, BS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (07) : 1327 - 1339
  • [49] The Andre-Oort conjecture for the moduli space of abelian surfaces
    Pila, Jonathan
    Tsimerman, Jacob
    COMPOSITIO MATHEMATICA, 2013, 149 (02) : 204 - 216
  • [50] Compactification by GIT-stability of the moduli space of abelian varieties
    Nakamura, Iku
    DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 : 207 - 286