Stabilization of Nonlinear Fornasini-Marchesini Systems

被引:4
|
作者
Emelianova, J. P. [1 ]
机构
[1] Alekseev Nizhny Novgorod State Tech Univ, Arzamas Polytech Inst, Arzamas, Russia
基金
俄罗斯基础研究基金会;
关键词
2D-systems; Fornasini-Marchesini model; stability; Lyapunov function; stabilizing control; linear matrix inequality (LMI); DYNAMICAL-SYSTEMS; STABILITY; PASSIVITY; MODELS;
D O I
10.1134/S0005117918100132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the 2D systems described by the Fornasini-Marchesini state-space model. Direct and converse theorems on the exponential stability of such systems are proved in terms of vector Lyapunov functions. The concepts of exponential passivity and a vector storage function are introduced for solving exponential stabilization problems. An example is given to illustrate the efficiency of the new results.
引用
收藏
页码:1903 / 1911
页数:9
相关论文
共 50 条
  • [21] On stability robustness of 2-D systems described by the Fornasini-Marchesini model
    Ooba, T
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2001, 12 (01) : 81 - 88
  • [22] Simultaneous Fault Detection and Control of Two-dimensional Fornasini-Marchesini Systems
    Wu X.-X.
    Ding D.-W.
    Ren Y.-Y.
    Liu H.-P.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 224 - 234
  • [23] SHUFFLE ALGORITHM FOR 2-DIMENSIONAL SINGULAR SYSTEMS WITH A FORNASINI-MARCHESINI MODEL
    BEAUCHAMP, G
    LEWIS, FL
    KYBERNETIKA, 1991, 27 (03) : 243 - 252
  • [24] Stability of 2-D systems described by the fornasini-Marchesini first model
    Kar, H
    Singh, V
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (06) : 1675 - 1676
  • [25] OBSERVABILITY AND RECONSTRUCTIBILITY OF THE 2-D FORNASINI-MARCHESINI MODEL
    KUREK, JE
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (08): : 1011 - 1014
  • [26] NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR FRACTIONAL FORNASINI-MARCHESINI MODEL
    Yusubov, Shakir Sh
    Mahmudov, Elimhan N.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (10) : 7221 - 7244
  • [27] H∞ control of 2-D discrete systems based on Fornasini-Marchesini model
    Chen Wen-hai
    Gao Li-xin
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 294 - 298
  • [28] On Kalman filtering for 2-D Fornasini-Marchesini models
    Yang, Ran
    Ntogramatzidis, Lorenzo
    Cantoni, Michael
    NDS: 2009 INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS, 2009, : 95 - +
  • [29] Equivalence of n-dimensional Roesser and Fornasini-Marchesini models
    Miri, SA
    Aplevich, JD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) : 401 - 405
  • [30] Fault Detection and Isolation of Fornasini-Marchesini 2D Systems: A Geometric Approach
    Baniamerian, Amir
    Meskin, Nader
    Khorasani, Khashayar
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 5527 - 5533