An Undergraduate Research Project Utilizing CRISPR-Cas9 Gene Editing Technology to Study Gene Function in Arabidopsis thaliana

被引:6
|
作者
Ruppel, Nicholas J. [1 ]
Estell, Lauren E. [1 ]
Jackson, Robert, I [2 ]
Wolyniak, Michael J. [2 ]
机构
[1] Randolph Macon Coll, Dept Biol, Ashland, VA 23005 USA
[2] Hampden Sydney Coll, Dept Biol, Hampden Sydney, VA 23943 USA
基金
美国国家科学基金会;
关键词
CRISPR/CAS9; PLANTS;
D O I
10.1128/jmbe.v20i2.1666
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The CRISPR-Cas9 system functions in microbial viral pathogen recognition pathways by identifying and targeting foreign DNA for degradation. Recently, biotechnological advances have allowed scientists to use CRISPR-Cas9-based elements as a molecular tool to selectively modify DNA in a wide variety of other living systems. Given the emerging need to bring engaging CRISPR-Cas9 laboratory experiences to an undergraduate audience, we incorporated a CRISPR-based research project into our Genetics class laboratories, emphasizing its use in plants. Our genetic manipulations were designed for Arabidopsis thaliana, which despite serving as a plant research model, has traditionally been difficult to use in a classroom setting. For this project, students transformed plasmid DNA containing the essential CRISPR-Cas9 gene editing elements into A. thaliana. Expression of these elements in the plant genome was expected to create a deletion at one of six targeted genes. The genes we chose had a known seedling and/or juvenile loss-of-function phenotype, which made genetic analysis by students with a limited background possible. It also allowed the project to reach completion in a typical undergraduate semester timeframe. Assessment efforts demonstrated several learning gains, including students' understanding of CRISPR-Cas9 content, their ability to apply CRISPR-Cas9 gene editing tools using bioinformatics and genetics, their ability to employ elements of experimental design, and improved science communication skills. They also felt a stronger connection to their scientific education and were more likely to continue on a STEM career path. Overall, this project can be used to introduce CRISPR-Cas9 technology to undergraduates using plants in a single-semester laboratory course.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Gene Editing and Crop Improvement Using CRISPR-Cas9 System
    Arora, Leena
    Narula, Alka
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [32] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Frangoul, H.
    Altshuler, D.
    Cappellini, M. D.
    Chen, Y-S
    Domm, J.
    Eustace, B. K.
    Foell, J.
    de la Fuente, J.
    Grupp, S.
    Handgretinger, R.
    Ho, T. W.
    Kattamis, A.
    Kernytsky, A.
    Lekstrom-Himes, J.
    Li, A. M.
    Locatelli, F.
    Mapara, M. Y.
    de Montalembert, M.
    Rondelli, D.
    Sharma, A.
    Sheth, S.
    Soni, S.
    Steinberg, M. H.
    Wall, D.
    Yen, A.
    Corbacioglu, S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03): : 252 - 260
  • [33] Reversible RNA acylation for control of CRISPR-Cas9 gene editing
    Habibian, Maryam
    McKinlay, Colin
    Blake, Timothy R.
    Kietrys, Anna M.
    Waymouth, Robert M.
    Wender, Paul A.
    Kool, Eric T.
    CHEMICAL SCIENCE, 2020, 11 (04) : 1011 - 1016
  • [34] Application of CRISPR-Cas9 gene editing for congenital heart disease
    Seok, Heeyoung
    Deng, Rui
    Cowan, Douglas B.
    Wang, Da-Zhi
    CLINICAL AND EXPERIMENTAL PEDIATRICS, 2021, 64 (06) : 269 - 279
  • [35] CRISPR-Cas9 Gene Editing with Nexiguran Ziclumeran for ATTR Cardiomyopathy
    Fontana, Marianna
    Solomon, Scott D.
    Kachadourian, Jessica
    Walsh, Liron
    Rocha, Ricardo
    Lebwohl, David
    Smith, Derek
    Taubel, Jorg
    Gane, Edward J.
    Pilebro, Bjorn
    Adams, David
    Razvi, Yousuf
    Olbertz, Joy
    Haagensen, Alexandra
    Zhu, Peijuan
    Xu, Yuanxin
    Leung, Adia
    Sonderfan, Alison
    Gutstein, David E.
    Gillmore, Julian D.
    NEW ENGLAND JOURNAL OF MEDICINE, 2024, 391 (23): : 2231 - 2241
  • [36] Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies
    Papizan, James B.
    Porter, Shaina N.
    Sharma, Akshay
    Pruett-Miller, Shondra M.
    JOURNAL OF BIOMEDICAL RESEARCH, 2021, 35 (02): : 115 - 134
  • [37] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Meisel, Roland
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (23):
  • [38] Modelling the Cancer Phenotype in the Era of CRISPR-Cas9 Gene Editing
    Stewart, J.
    Banerjee, S.
    Pettitt, S. J.
    Lord, C. J.
    CLINICAL ONCOLOGY, 2020, 32 (02) : 69 - 74
  • [39] CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential
    Blenke, Erik Oude
    Evers, Martijn J. W.
    Mastrobattista, Enrico
    van der Oost, John
    JOURNAL OF CONTROLLED RELEASE, 2016, 244 : 139 - 148
  • [40] Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing
    Gong Shaohua
    Li Na
    Tang Bo
    ACTA CHIMICA SINICA, 2020, 78 (07) : 634 - 641