Some inequalities for planar convex sets containing one lattice point

被引:0
|
作者
Hernandez, MA [1 ]
Gomis, SS [1 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain two inequalities relating the diameter and the (minimal) width with the area of a planar convex set containing exactly one point of the integer lattice in its interior. They are best possible. We then use these results to obtain some related inequalities.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [41] A CENSUS OF CONVEX LATTICE POLYGONS WITH AT MOST ONE INTERIOR LATTICE POINT
    RABINOWITZ, S
    ARS COMBINATORIA, 1989, 28 : 83 - 96
  • [42] An Analysis of Mixed Integer Linear Sets Based on Lattice Point Free Convex Sets
    Andersen, Kent
    Louveaux, Quentin
    Weismantel, Robert
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (01) : 233 - 256
  • [43] Linear-size planar Manhattan network for convex point sets
    Jana, Satyabrata
    Maheshwari, Anil
    Roy, Sasanka
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100
  • [44] Lattice-point generating functions for free sums of convex sets
    Beck, Matthias
    Jayawant, Pallavi
    McAllister, Tyrrell B.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (06) : 1246 - 1262
  • [45] A Note on Some Poincare Inequalities on Convex Sets by Optimal Transport Methods
    Brasco, Lorenzo
    Santambrogio, Filippo
    GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S, 2016, 176 : 49 - 63
  • [46] TRANSLATIONS OF PLANAR CONVEX SETS
    NISHIURA, T
    SCHNITZE.F
    ARCHIV DER MATHEMATIK, 1971, 22 (01) : 103 - &
  • [47] Extremal convex planar sets
    Ting, L
    Keller, JB
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (03) : 369 - 393
  • [48] Extremal Convex Planar Sets
    Lu Ting
    Joseph B. Keller
    Discrete & Computational Geometry, 2005, 33 : 369 - 393
  • [49] Some interesting behaviors of good lattice point sets
    Elsawah, A. M.
    Fang, Kai-Tai
    Deng, Yu Hui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3650 - 3668
  • [50] Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities
    Kyritsi, ST
    Papageorgiou, NS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (03) : 373 - 403