Alzheimer's disease diagnosis based on long-range dependency mechanism using convolutional neural network

被引:7
|
作者
Pei, Zhao [1 ,2 ]
Gou, Yuanshuai [2 ]
Ma, Miao [2 ]
Guo, Min [2 ]
Leng, Chengcai [3 ]
Chen, Yuli [2 ]
Li, Jun [4 ]
机构
[1] Minist Educ, Key Lab Modern Teaching Technol, Xian 710062, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
[3] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[4] Nanjing Normal Univ, Sch Comp Sci, Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer's disease diagnosis; Long-range dependency mechanism; Convolutional neural network; Classification; CLASSIFICATION; REGRESSION; CONVERSION; ADNI; MCI;
D O I
10.1007/s11042-021-11279-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Being able to collect rich morphological information of brain, structural magnetic resonance imaging (MRI) is popularly applied to computer-aided diagnosis of Alzheimer's disease (AD). Conventional methods for AD diagnosis are labor-intensive and typically depend on a substantial amount of hand-crafted features. In this paper, we propose a novel framework of convolutional neural network that aims at identifying AD or normal control, and mild cognitive impairment or normal control. The centerpiece of our method are pseudo-3D block and expanded global context block which are integrated into residual block of backbone in a cascaded manner. To be specific, we transfer pseudo-3D block in the video feature representation to extract structural MRI features. Besides, we extend the 2D global context block to the 3D model which can effectively combine the features and capture the latent associations, while simulate the global context in each dimension of structural MRI results. With the preprocessed structural MRI used as the input of the overall network, our method is capable of constructing a latent representation with multiple residual blocks to promote the classification accuracy. Intrinsically, our method reduces the complexity of conventional 3D convolutional network model applied to AD diagnosis and improves the classification accuracy over the baseline. Furthermore, our network can fully take advantage of the deep 3D convolutional neural network for automatic feature extraction and representation, and thus avoids the limitation of low processing efficiency caused by the preprocessing procedure in which a specific area needs to be annotated in advance. Experimental results on Alzheimer's Disease Neuroimaging Initiative database indicate that our proposed method reports accuracy of 89.29% on the AD/NC and 87.57% on the mild cognitive impairment/NC, whilst our approach achieves the 0.5% improvement of accuracy compared with the backbone.
引用
收藏
页码:36053 / 36068
页数:16
相关论文
共 50 条
  • [1] Alzheimer’s disease diagnosis based on long-range dependency mechanism using convolutional neural network
    Zhao Pei
    Yuanshuai Gou
    Miao Ma
    Min Guo
    Chengcai Leng
    Yuli Chen
    Jun Li
    Multimedia Tools and Applications, 2022, 81 : 36053 - 36068
  • [2] Early Diagnosis of Alzheimer's Disease using Convolutional Neural Network-based MRI
    Kadhim, Karrar A.
    Mohamed, Farhan
    Sakran, Ammar AbdRaba
    Adnan, Myasar Mundher
    Salman, Ghalib Ahmed
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (03): : 362 - 368
  • [3] A Deep Convolutional Neural Network For Early Diagnosis of Alzheimer's Disease
    Liu, Maximus
    Shalaginov, Mikhail Y.
    Liao, Rory
    Zeng, Tingying Helen
    2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 58 - 61
  • [4] Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network
    Deevyankar Agarwal
    Manuel Álvaro Berbís
    Antonio Luna
    Vivian Lipari
    Julien Brito Ballester
    Isabel de la Torre-Díez
    Journal of Medical Systems, 47
  • [5] Automated Medical Diagnosis of Alzheimer's Disease Using an Efficient Net Convolutional Neural Network
    Agarwal, Deevyankar
    Berbis, Manuel Alvaro
    Luna, Antonio
    Lipari, Vivian
    Ballester, Julien Brito
    de la Torre-diez, Isabel
    JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
  • [6] Transformed domain convolutional neural network for Alzheimer?s disease diagnosis using structural MRI
    Abbas, S. Qasim
    Chi, Lianhua
    Chen, Yi-Ping Phoebe
    PATTERN RECOGNITION, 2023, 133
  • [7] Volumetric Feature-Based Alzheimer's Disease Diagnosis From sMRI Data Using a Convolutional Neural Network and a Deep Neural Network
    Basher, Abol
    Kim, Byeong C.
    Lee, Kun Ho
    Jung, Ho Yub
    IEEE ACCESS, 2021, 9 : 29870 - 29882
  • [8] Adaptive Weights Integrated Convolutional Neural Network for Alzheimer's Disease Diagnosis
    Wang, Xinying
    Wang, Wanqiu
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (12) : 2893 - 2900
  • [9] Hierarchical Pooling Graph Convolutional Neural Network for Alzheimer’s Disease Diagnosis
    Yang, Zhi (zyang631@hbut.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (14325 LNAI):
  • [10] Early Diagnosis of Alzheimer's Disease Based on Convolutional Neural Networks
    Mehmood, Atif
    Abugabah, Ahed
    AlZubi, Ahmed Ali
    Sanzogni, Louis
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (01): : 305 - 315