Imaging mass spectrometry in biological tissues by laser ablation inductively coupled plasma mass spectrometry

被引:31
|
作者
Becker, J. S. [1 ]
Su, J.
Zoriya, M. V.
Dobrowolska, J.
Matusch, A.
机构
[1] Res Ctr Julich, Cent Div Analyt Chem, D-52425 Julich, Germany
[2] Ctr Technol Helioparc, Lab Chim Analyt Bioinorgan & Environm, F-64053 Pau, France
[3] Res Ctr Julich, Inst Med, D-52425 Julich, Germany
关键词
biological tissues; imaging mass spectrometry; copper; laser ablation inductively coupled plasma mass spectrometry; MALDI-FT-ICR-MS; metalloproteins; selenium; zinc;
D O I
10.1255/ejms.833
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Of all the inorganic mass spectrometric techniques, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) plays a key role as a powerful and sensitive microanalytical technique enabling multi-element trace analysis and isotope ratio measurements at trace and ultratrace level. LA-ICP-MS was used to produce images of detailed regionally-specific element distribution in 20 pm thin sections of different parts of the human brain. The quantitative determination of copper, zinc, lead and uranium distribution in thin slices of human brain samples was performed using matrix-matched laboratory standards via external calibration procedures. Imaging mass spectrometry provides new information on the spatially inhomogeneous element distribution in thin sections of human tissues, for example, of different brain regions (the insular region) or brain tumor tissues. The detection limits obtained for Cu, Zn, Ph and U were in the ng g(-1) range. Possible strategies of LA-ICP-MS in brain research and life sciences include the elemental imaging of thin slices of brain tissue or applications in proteome analysis by combination with matrix-assisted laser desorption/ionization NIS to study phospho- and metal- containing proteins will be discussed.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [11] Laser ablation inductively coupled plasma mass spectrometry: Principles and applications
    Mokgalaka, NS
    Gardea-Torresdey, JL
    APPLIED SPECTROSCOPY REVIEWS, 2006, 41 (02) : 131 - 150
  • [12] Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry
    Longerich, HP
    Gunther, D
    Jackson, SE
    FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1996, 355 (5-6): : 538 - 542
  • [13] Analyte response in laser ablation inductively coupled plasma mass spectrometry
    Wang, ZK
    Hattendorf, B
    Günther, D
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2006, 17 (05) : 641 - 651
  • [14] In torch laser ablation sampling for inductively coupled plasma mass spectrometry
    Tanner, M
    Gunther, D
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2005, 20 (09) : 987 - 989
  • [15] Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry
    Fliegel, Daniel
    Guenther, Detlef
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2006, 61 (07) : 841 - 849
  • [16] Petrochronology by Laser-Ablation Inductively Coupled Plasma Mass Spectrometry
    Kylander-Clark, Andrew R. C.
    PETROCHRONOLOGY: METHODS AND APPLICATIONS, 2017, 83 : 183 - +
  • [17] Laser-ablation inductively-coupled plasma mass spectrometry
    Günther, D
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2002, 372 (01) : 31 - 32
  • [18] Nanoparticle enhanced laser ablation inductively coupled plasma mass spectrometry
    Mangone, Annarosa
    Mastrorocco, Fabrizio
    Giannossa, Lorena Carla
    Comparelli, Roberto
    Dell'Aglio, Marcella
    De Giacomo, Alessandro
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 163 (163)
  • [19] Laser-ablation inductively-coupled plasma mass spectrometry
    Detlef Günther
    Analytical and Bioanalytical Chemistry, 2002, 372 : 31 - 32
  • [20] Spatial resolution in laser ablation inductively coupled plasma mass spectrometry
    Coedo, A. G.
    Dorado, M. T.
    REVISTA DE METALURGIA, 2010, 46 (01) : 52 - 68