Darboux transformation and soliton-like solutions of nonlinear Schrodinger equations

被引:46
|
作者
Xia, TC [1 ]
Chen, XH
Chen, DY
机构
[1] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
[2] Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China
[3] Anshan Univ Sci & Technol, Dept Math, Anshan 114007, Peoples R China
[4] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.01.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Letter, a systematic method is presented to construct c the Darboux transformation with multi-parameters for the coupled nonlinear Schrodinger equations, from which the solutions of Schrodinger equations are reduced to solving a linear algebraic system and a constraint differential equation. With the aid of symbolic computation, new soliton-like solutions for the nonlinear Schrodinger equations are obtained by using its Darboux transformation. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:889 / 896
页数:8
相关论文
共 50 条
  • [31] Darboux transformation and multi-soliton solutions for some soliton equations
    Zhaqilao
    Chen, Yong
    Li, Zhi-Bin
    CHAOS SOLITONS & FRACTALS, 2009, 41 (02) : 661 - 670
  • [32] Explicit N-fold Darboux transformations and soliton solutions for nonlinear derivative Schrodinger equations
    Fan, EG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (06) : 651 - 656
  • [33] Soliton-like solutions for the coupled Schrodinger-Boussinesq equation
    Eslami, M.
    OPTIK, 2015, 126 (23): : 3987 - 3991
  • [34] Emergent soliton-like solutions in the parametrically driven 1-D nonlinear Schrodinger equation
    Dileep, K.
    Murugesh, S.
    PHYSICA SCRIPTA, 2023, 98 (04)
  • [35] The stochastic soliton-like solutions of stochastic KdV equations
    Chen, Y
    Wang, Q
    Ll, B
    CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1465 - 1473
  • [36] ON EXACT HYPERGEOMETRIC SOLUTIONS OF CERTAIN SOLITON-LIKE EQUATIONS
    Tarasov, V. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (23): : 4509 - 4519
  • [37] Soliton-like solutions of a derivative nonlinear Schrodinger equation with variable coefficients in inhomogeneous optical fibers
    Li, Min
    Tian, Bo
    Liu, Wen-Jun
    Zhang, Hai-Qiang
    Meng, Xiang-Hua
    Xu, Tao
    NONLINEAR DYNAMICS, 2010, 62 (04) : 919 - 929
  • [38] The stochastic soliton-like solutions of stochastic mKdV equations
    Chen, Y
    Li, B
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (01) : 1 - 8
  • [39] Integrability and soliton-like solutions for the coupled higher-order nonlinear Schrodinger equations with variable coefficients in inhomogeneous optical fibers
    Wang, Yu-Feng
    Tian, Bo
    Li, Min
    Wang, Pan
    Wang, Ming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) : 1783 - 1791
  • [40] Nonlocal nonlinear Schrodinger equations and their soliton solutions
    Gurses, Metin
    Pekcan, Asli
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)