Phase transformation in Si from semiconducting diamond to metallic β-Sn phase in QMC and DFT under hydrostatic and anisotropic stress

被引:64
|
作者
Hennig, R. G. [1 ,2 ]
Wadehra, A. [2 ]
Driver, K. P. [2 ]
Parker, W. D. [2 ]
Umrigar, C. J. [3 ]
Wilkins, J. W. [2 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[3] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; HIGH-PRESSURE PHASES; ELECTRON-GAS; SILICON; TRANSITION; ENERGY; SIMULATIONS; DEPENDENCE; ACCURATE;
D O I
10.1103/PhysRevB.82.014101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon undergoes a phase transition from the semiconducting diamond phase to the metallic beta-Sn phase under pressure. We use quantum Monte Carlo calculations to predict the transformation pressure and compare the results to density-functional calculations employing the local-density approximation, the generalized-gradient approximations PBE, PW91, WC, AM05, PBEsol, and the hybrid functional HSE06 for the exchange-correlation functional. Diffusion Monte Carlo predicts a transition pressure of 14.0 +/- 1.0 GPa slightly above the experimentally observed transition pressure range of 11.3-12.6 GPa. The HSE06 hybrid functional predicts a transition pressure of 12.4 GPa in excellent agreement with experiments. Exchange-correlation functionals using the local-density approximation and generalized-gradient approximations result in transition pressures ranging from 3.5 to 10.0 GPa, well below the experimental values. The transition pressure is sensitive to stress anisotropy. Anisotropy in the stress along any of the cubic axes of the diamond phase of silicon lowers the equilibrium transition pressure and may explain the discrepancy between the various experimental values as well as the small overestimate of the quantum Monte Carlo transition pressure.
引用
收藏
页数:9
相关论文
共 16 条
  • [11] Phase transformations, microstructural refinement and defect evolution mechanisms in Al-Si alloys under non-hydrostatic diamond anvil cell compression
    Liu, Tingkun
    Olszta, Matthew
    Gwalani, Bharat
    Park, Changyong
    Mathaudhu, Suveen
    Devaraj, Arun
    MATERIALIA, 2021, 15
  • [12] Cryogenic-temperature-induced phase transformation in a CuZr-based bulk metallic glass composite under tensile stress
    Xue, Peng
    Huang, Yongjiang
    Jiang, Songshan
    Sun, Jianfei
    MATERIALS LETTERS, 2020, 262
  • [13] Phase transformation behavior of a dual-phase nanostructured Fe-Ni-B-Si-P-Nb metallic glass and its correlation with stress-impedance properties
    Jia-Cheng Ge
    Ai-Hua Liu
    Zhen-Duo Wu
    Yao Gu
    Yu-Bin Ke
    An-Ding Wang
    Yang Ren
    Song Tang
    Hui-Qiang Ying
    He Zhu
    Xun-Li Wang
    Si Lan
    Rare Metals, 2023, 42 (08) : 2757 - 2766
  • [14] Phase transformation behavior of a dual-phase nanostructured Fe-Ni-B-Si-P-Nb metallic glass and its correlation with stress-impedance properties
    Jia-Cheng Ge
    Ai-Hua Liu
    Zhen-Duo Wu
    Yao Gu
    Yu-Bin Ke
    An-Ding Wang
    Yang Ren
    Song Tang
    Hui-Qiang Ying
    He Zhu
    Xun-Li Wang
    Si Lan
    Rare Metals, 2023, 42 : 2757 - 2766
  • [15] Phase transformation behavior of a dual-phase nanostructured Fe-Ni-B-Si-P-Nb metallic glass and its correlation with stress-impedance properties
    Ge, Jia-Cheng
    Liu, Ai-Hua
    Wu, Zhen-Duo
    Gu, Yao
    Ke, Yu-Bin
    Wang, An-Ding
    Ren, Yang
    Tang, Song
    Ying, Hui-Qiang
    Zhu, He
    Wang, Xun-Li
    Lan, Si
    RARE METALS, 2023, 42 (08) : 2757 - 2766
  • [16] From Metallic LnTt (Ln = La, Nd; Tt = Si, Ge, Sn) to Electron-precise Zintl Phase Hydrides LnTtH
    Werwein, Anton
    Auer, Henry
    Kuske, Lena
    Kohlmann, Holger
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2018, 644 (22): : 1532 - 1539