In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed. The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtual knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial. In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots. The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations. We also discuss other examples of knot theories with parity.
机构:
Moscow MV Lomonosov State Univ, Lab Int Franco Russe Math & Interact Informat & P, Moscow, RussiaMoscow MV Lomonosov State Univ, Lab Int Franco Russe Math & Interact Informat & P, Moscow, Russia
机构:
St Marys Coll Maryland, Dept Math & Comp Sci, 18952 E Fisher Rd, St Marys City, MD 20686 USASt Marys Coll Maryland, Dept Math & Comp Sci, 18952 E Fisher Rd, St Marys City, MD 20686 USA
Ganzell, Sandy
Henrich, Allison
论文数: 0引用数: 0
h-index: 0
机构:
Seattle Univ, Dept Math, 901 12th Ave, Seattle, WA 98122 USASt Marys Coll Maryland, Dept Math & Comp Sci, 18952 E Fisher Rd, St Marys City, MD 20686 USA
机构:
Univ Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 208, I-33100 Udine, Italy
TU Wien, Dept Discrete Math & Geometry, WiednerHauptstr 8-10, A-1040 Vienna, AustriaUniv Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 208, I-33100 Udine, Italy
Iannella, Martina
Marcone, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 208, I-33100 Udine, ItalyUniv Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 208, I-33100 Udine, Italy
Marcone, Alberto
Ros, Luca motto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10121 Turin, ItalyUniv Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 208, I-33100 Udine, Italy
Ros, Luca motto
Weinstein, Vadim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oulu, Ctr Ubiquitous Comp, Erkki Koiso-Kanttilan katu 3,door E,POB 4500, FI-90014 Oulu, FinlandUniv Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 208, I-33100 Udine, Italy