Resolving ambiguity in biomedical text to improve summarization

被引:15
|
作者
Plaza, Laura [1 ]
Stevenson, Mark [2 ]
Diaz, Alberto [1 ]
机构
[1] Univ Complutense Madrid, Dpto Ingn Software & Inteligencia Artificial, E-28040 Madrid, Spain
[2] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Biomedical summarization; Word sense disambiguation; WSD; Unified medical language system; UMLS; MetaMap; WORD SENSE DISAMBIGUATION; INFORMATION; DOMAIN;
D O I
10.1016/j.ipm.2011.09.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Access to the vast body of research literature that is now available on biomedicine and related fields can be improved with automatic summarization. This paper describes a summarization system for the biomedical domain that represents documents as graphs formed from concepts and relations in the UMLS Metathesaurus. This system has to deal with the ambiguities that occur in biomedical documents. We describe a variety of strategies that make use of MetaMap and Word Sense Disambiguation (WSD) to accurately map biomedical documents onto UMLS Metathesaurus concepts. Evaluation is carried out using a collection of 150 biomedical scientific articles from the BioMed Central corpus. We find that using WSD improves the quality of the summaries generated. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:755 / 766
页数:12
相关论文
共 50 条
  • [31] Graph-based biomedical text summarization: An itemset mining and sentence clustering approach
    Azadani, Mozhgan Nasr
    Ghadiri, Nasser
    Davoodijam, Ensieh
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 84 : 42 - 58
  • [32] Automated Multi-Document Biomedical Text Summarization Using Deep Learning Model
    Almasoud, Ahmed S.
    Hassine, Siwar Ben Haj
    Al-Wesabi, Fahd N.
    Nour, Mohamed K.
    Hilal, Anwer Mustafa
    Al Duhayyim, Mesfer
    Hamza, Manar Ahmed
    Motwakel, Abdelwahed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5799 - 5815
  • [33] Graph Ranked Clustering Based Biomedical Text Summarization Using Top k Similarity
    Gupta S.
    Sharaff A.
    Nagwani N.K.
    Computer Systems Science and Engineering, 2023, 45 (03): : 2333 - 2349
  • [34] Frequent item-set mining and clustering based ranked biomedical text summarization
    Supriya Gupta
    Aakanksha Sharaff
    Naresh Kumar Nagwani
    The Journal of Supercomputing, 2023, 79 : 139 - 159
  • [35] Frequent item-set mining and clustering based ranked biomedical text summarization
    Gupta, Supriya
    Sharaff, Aakanksha
    Nagwani, Naresh Kumar
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (01): : 139 - 159
  • [36] Using Semantic Graphs and Word Sense Disambiguation Techniques to Improve Text Summarization
    Plaza, Laura
    Diaz, Alberto
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2011, (47): : 97 - 105
  • [37] Exploring Graph Bushy Paths to Improve Statistical Multilingual Automatic Text Summarization
    Aries, Abdelkrime
    Zegour, Djamel Eddine
    Hidouci, Walid Khaled
    COMPUTATIONAL INTELLIGENCE AND ITS APPLICATIONS, 2018, 522 : 78 - 89
  • [38] Legal Case Summarization: An Application for Text Summarization
    Agrawal, Kanika
    2020 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI - 2020), 2020, : 363 - 368
  • [39] Responsive text summarization
    Leiva, Luis A.
    INFORMATION PROCESSING LETTERS, 2018, 130 : 52 - 57
  • [40] Automatic Text Summarization
    Soumya, S.
    Kumar, Geethu S.
    Naseem, Rasia
    Mohan, Saumya
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 787 - 789