Matrix Krylov subspace methods for linear systems with multiple right-hand sides

被引:50
|
作者
Heyouni, M
Essai, A
机构
[1] Univ Littoral Cote Opale, Lab Math Pures & Appl Joseph Liouville, F-62228 Calais, France
[2] Univ Sci & Technol Lille, UFR IEEA M3, Lab Anal Numer & Optimisat, F-59655 Villeneuve Dascq, France
关键词
linear systems; multiple right-hand sides; matrix Krylov subspace; weighted global Arnoldi and global Hessenberg processes; matrix equations;
D O I
10.1007/s11075-005-1526-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first give a result which links any global Krylov method for solving linear systems with several right-hand sides to the corresponding classical Krylov method. Then, we propose a general framework for matrix Krylov subspace methods for linear systems with multiple right-hand sides. Our approach use global projection techniques, it is based on the Global Generalized Hessenberg Process (GGHP) - which use the Frobenius scalar product and construct a basis of a matrix Krylov subspace - and on the use of a Galerkin or a minimizing norm condition. To accelerate the convergence of global methods, we will introduce weighted global methods. In these methods, the GGHP uses a different scalar product at each restart. Experimental results are presented to show the good performances of the weighted global methods.
引用
收藏
页码:137 / 156
页数:20
相关论文
共 50 条
  • [31] Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD
    Sakurai, T.
    Tadano, H.
    Kuramashi, Y.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (01) : 113 - 117
  • [33] Results concerning interval linear systems with multiple right-hand sides and the interval matrix equation AX = B
    Hashemi, Behnam
    Dehghan, Mehdi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) : 2969 - 2978
  • [34] REPRESENTATION FOR MULTIPLE RIGHT-HAND SIDES
    BLAIR, C
    MATHEMATICAL PROGRAMMING, 1990, 49 (01) : 1 - 5
  • [35] A block GCROT(m, k) method for linear systems with multiple right-hand sides
    Meng, Jing
    Zhu, Pei-Yong
    Li, Hou-Biao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 544 - 554
  • [36] Accelerating data uncertainty quantification by solving linear systems with multiple right-hand sides
    Kalantzis, V.
    Bekas, C.
    Curioni, A.
    Gallopoulos, E.
    NUMERICAL ALGORITHMS, 2013, 62 (04) : 637 - 653
  • [37] Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides
    Abdel-Rehim, A. M.
    Stathopoulos, Andreas
    Orginos, Kostas
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (04) : 473 - 493
  • [38] A Polynomial Preconditioned Global CMRH Method for Linear Systems with Multiple Right-Hand Sides
    Zhang, Ke
    Gu, Chuanqing
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [39] Direct global Lanczos method for large linear systems with multiple right-hand sides
    S. Elgharbi
    M. Esghir
    O. Ibrihich
    B. Abouzaid
    M. Essaouini
    S. El Hajji
    Afrika Matematika, 2020, 31 : 57 - 69
  • [40] A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides
    Du, L.
    Sogabe, T.
    Yu, B.
    Yamamoto, Y.
    Zhang, S. -L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) : 4095 - 4106