Space-based laser for a cloud and aerosol backscatter lidar

被引:0
|
作者
Stadler, JH [1 ]
Hostetler, CA [1 ]
Williams-Byrd, J [1 ]
Hovis, F [1 ]
Bradford, CM [1 ]
Schwiesow, R [1 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
NASA Langley Research Center in conjunction with Ball Aerospace & Technologies Corp., are developing a small, lightweight, diode-pumped Nd:YAG laser to enable a spaceborne backscatter lidar to measure clouds and aerosols. The frequency-doubled laser has total output energy of 220 mJ at 27 Hz. The laser has been specifically designed for space applications and features conductive cooling and a minimum three-year design life.
引用
收藏
页码:602 / 603
页数:2
相关论文
共 50 条
  • [21] Long-term variation of cloud droplet number concentrations from space-based Lidar
    Li, Jiming
    Jian, Bida
    Huang, Jianping
    Hu, Yongxiang
    Zhao, Chuanfeng
    Kawamoto, Kazuaki
    Liao, Shujie
    Wu, Min
    REMOTE SENSING OF ENVIRONMENT, 2018, 213 : 144 - 161
  • [22] MIDLATITUDE LIDAR BACKSCATTER CONVERSIONS BASED ON BALLOONBORNE AEROSOL MEASUREMENTS
    JAGER, H
    DESHLER, T
    HOFMANN, DJ
    GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (13) : 1729 - 1732
  • [23] Stabilized diode seed laser for flight and space-based remote lidar sensing applications
    McNeil, Shirley
    Pandit, Pushkar
    Battle, Philip
    Rudd, Joe
    Hovis, Floyd
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING 2017, 2017, 10406
  • [24] Development of Tm,Ho:YLF laser for future space-based Doppler wind lidar
    Ishii, Shoken
    Sato, Atsushi
    Aoki, Makoto
    Akahane, Kouichi
    Nagano, Shigeo
    Nakagawa, Katsuhiro
    Sato, Kaori
    Okamoto, Hajime
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING XVI, 2018, 10779
  • [25] High efficiency laser designs for airborne and space-based lidar remote sensing systems
    Hovis, F.
    Burnham, R.
    Storm, M.
    Edwards, R.
    Burns, P.
    Sullivan, E.
    Edelman, J.
    Andes, K.
    Walters, B.
    Le, K.
    Culpepper, C.
    Rudd, J.
    Chuang, Ti
    Dang, X.
    Hwang, J.
    Wysocki, T.
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING XII, 2011, 8159
  • [26] AIRBORNE CO2 COHERENT LIDAR FOR MEASUREMENTS OF ATMOSPHERIC AEROSOL AND CLOUD BACKSCATTER
    MENZIES, RT
    TRATT, DM
    APPLIED OPTICS, 1994, 33 (24): : 5698 - 5711
  • [27] Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data
    Liu, ZY
    Vaughan, MA
    Winker, DM
    Hostetler, CA
    Poole, LR
    Hlavka, D
    Hart, W
    McGill, M
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D15) : D152021 - 13
  • [28] Multistatic aerosol-cloud lidar in space: A theoretical perspective
    Mishchenko, Michael I.
    Alexandrov, Mikhail D.
    Cairns, Brian
    Travis, Larry D.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 184 : 180 - 192
  • [29] The Space-Borne Lidar Cloud and Aerosol Classification Algorithms
    Li Ming-yang
    Fan Meng
    Tao Jin-hua
    Su Lin
    Wu Tong
    Chen Liang-fu
    Zhang Zi-li
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (02) : 383 - 391
  • [30] Sensitivity studies for a space-based methane lidar mission
    Kiemle, C.
    Quatrevalet, M.
    Ehret, G.
    Amediek, A.
    Fix, A.
    Wirth, M.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (10) : 2195 - 2211