Efficient source adaptivity in independent component analysis

被引:48
|
作者
Vlassis, N
Motomura, Y
机构
[1] Univ Amsterdam, RWCP, Autonomous Learning Funct SNN, Dept Comp Sci, NL-1098 SJ Amsterdam, Netherlands
[2] Electrotech Lab, Tsukuba, Ibaraki 3058568, Japan
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 03期
关键词
blind signal separation; independent component analysis (ICA); score function estimation; source adaptivity;
D O I
10.1109/72.925558
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A basic element in most independent component analysis (ICA) algorithms is the choice of a model for the score functions of the unknown sources. While this is usually based on approximations, for large data sets it is possible to achieve "source adaptivity" by directly estimating from the data the "'true" score functions of the sources. In this paper we describe an efficient scheme for achieving this by extending the fast density estimation method of Silverman (1982), We show with a real and a synthetic experiment that our method can provide more accurate solutions than state-of-the-art methods when optimization is carried out in the vicinity of the global minimum of the contrast function.
引用
收藏
页码:559 / 566
页数:8
相关论文
共 50 条
  • [11] Efficient feature selection based on independent component analysis
    Prasad, M
    Sowmya, A
    Koch, I
    PROCEEDINGS OF THE 2004 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, 2004, : 427 - 432
  • [12] Acoustical Source Tracing Using Independent Component Analysis and Correlation Analysis
    Cheng, Wei
    Zhang, Zhousuo
    Zhang, Jie
    Lu, Jiantao
    SHOCK AND VIBRATION, 2015, 2015
  • [13] A semiparametric approach to source separation using independent component analysis
    Eloyan, Ani
    Ghosh, Sujit K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 383 - 396
  • [14] Recursive Independent Component Analysis for Online Blind Source Separation
    Akhtar, Muhammad Tahir
    Jung, Tzyy-Ping
    Makeig, Scott
    Cauwenberghs, Gert
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,
  • [15] Blind Source Separation Combining Independent Component Analysis and Beamforming
    Saruwatari, Hiroshi
    Kurita, Satoshi
    Takeda, Kazuya
    Itakura, Fumitada
    Nishikawa, Tsuyoki
    Shikano, Kiyohiro
    Eurasip Journal on Applied Signal Processing, 2003, 2003 (11): : 1135 - 1146
  • [16] Sparse Kernel Independent Component Analysis for Blind Source Separation
    Khan, Asif
    Kim, Intaek
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2008, 12 (03) : 121 - 125
  • [17] Extracting features based on independent component analysis with source dependency
    Qu, W
    Liu, HP
    Zhang, HJ
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 4636 - 4640
  • [18] A contrast for independent component analysis with priors on the source kurtosis signs
    Zarzoso, Vicente
    Phlypo, Ronald
    Comon, Pierre
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 (501-504) : 501 - 504
  • [19] Repeated blind source separation based on independent component analysis
    Leng, Yong-Gang
    Chen, Ting-Ting
    Huang, Li-Kun
    Zhao, Yan-Ju
    Ding, Wen-Qi
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2010, 23 (05): : 508 - 513
  • [20] Blind Source Separation Combining Independent Component Analysis and Beamforming
    Hiroshi Saruwatari
    Satoshi Kurita
    Kazuya Takeda
    Fumitada Itakura
    Tsuyoki Nishikawa
    Kiyohiro Shikano
    EURASIP Journal on Advances in Signal Processing, 2003