Efficient source adaptivity in independent component analysis

被引:48
|
作者
Vlassis, N
Motomura, Y
机构
[1] Univ Amsterdam, RWCP, Autonomous Learning Funct SNN, Dept Comp Sci, NL-1098 SJ Amsterdam, Netherlands
[2] Electrotech Lab, Tsukuba, Ibaraki 3058568, Japan
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 03期
关键词
blind signal separation; independent component analysis (ICA); score function estimation; source adaptivity;
D O I
10.1109/72.925558
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A basic element in most independent component analysis (ICA) algorithms is the choice of a model for the score functions of the unknown sources. While this is usually based on approximations, for large data sets it is possible to achieve "source adaptivity" by directly estimating from the data the "'true" score functions of the sources. In this paper we describe an efficient scheme for achieving this by extending the fast density estimation method of Silverman (1982), We show with a real and a synthetic experiment that our method can provide more accurate solutions than state-of-the-art methods when optimization is carried out in the vicinity of the global minimum of the contrast function.
引用
收藏
页码:559 / 566
页数:8
相关论文
共 50 条
  • [1] Efficient independent component analysis
    Chen, Aiyou
    Bickel, Peter J.
    ANNALS OF STATISTICS, 2006, 34 (06): : 2825 - 2855
  • [2] An efficient architecture for independent component analysis
    Fiori, S
    Baldassarri, P
    Piazza, F
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5: SYSTEMS, POWER ELECTRONICS, AND NEURAL NETWORKS, 1999, : 335 - 338
  • [3] Blind source separation and independent component analysis
    Puntonet, Carlos G.
    Lang, Elmar W.
    NEUROCOMPUTING, 2006, 69 (13-15) : 1413 - 1413
  • [4] Independent Component Analysis and Blind Source Separation
    Barros, Allan Kardec
    Principe, Jose Carlos
    Erdogmus, Deniz
    SIGNAL PROCESSING, 2007, 87 (08) : 1817 - 1818
  • [5] Efficient Independent Component Analysis with Reference Algorithm
    Chen, Ying
    Wang, Fasong
    Wang, Zhongyong
    PROCEEDINGS OF 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2015), 2015, : 1445 - 1448
  • [6] An efficient quantum algorithm for independent component analysis
    Xu, Xiao-Fan
    Zhuang, Xi-Ning
    Xue, Cheng
    Chen, Zhao-Yun
    Wu, Yu-Chun
    Guo, Guo-Ping
    NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [7] Audio source separation based on independent component analysis
    Makino, S
    Araki, S
    Mukai, R
    Sawada, H
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, 2004, : 668 - 671
  • [8] Application of independent component analysis for sound source separation
    Tan, Chin An
    Gupta, Arvind
    Li, Shaungqing
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 299 - 305
  • [9] Flexible and efficient implementations of Bayesian independent component analysis
    Winther, Ole
    Petersen, Kaare Brandt
    NEUROCOMPUTING, 2007, 71 (1-3) : 221 - 233
  • [10] Efficient Texture Classification Using Independent Component Analysis
    Hawashin, Bilal
    Mansour, Ayman
    Abukhait, Jafar
    Khazalah, Fayez
    AlZu'bi, Shadi
    Kanan, Tarek
    Obaidat, Mohammad
    Elbes, Mohammed
    2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 544 - 547