Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

被引:22
|
作者
Lohvithee, Manasavee [1 ]
Biguri, Ander [1 ]
Soleimani, Manuchehr [1 ]
机构
[1] Univ Bath, ETL, Bath, Avon, England
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2017年 / 62卷 / 24期
关键词
total variation (TV); edge preserving function; parameter tuning; iterative reconstruction; limited data reconstruction; TOTAL-VARIATION MINIMIZATION; COMPUTED-TOMOGRAPHY; IMAGE-RECONSTRUCTION; ITERATIVE ALGORITHMS; RADIATION-EXPOSURE; NOISE; SART;
D O I
10.1088/1361-6560/aa93d3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.
引用
收藏
页码:9295 / 9321
页数:27
相关论文
共 50 条
  • [21] Limited Field-Of-View Cone-Beam CT Reconstruction for Adaptive Radiotherapy
    Lu, W.
    Yan, H.
    Zhou, L.
    Cervino, L.
    Jiang, S.
    Jia, X.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [22] Cardiac cone-beam CT volume reconstruction using ART
    Nielsen, T
    Manzke, R
    Proksa, R
    Grass, M
    MEDICAL PHYSICS, 2005, 32 (04) : 851 - 860
  • [23] Helical CT reconstruction from wide cone-beam angle data using ART
    Carvalho, BM
    Herman, GT
    XVI BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2003, : 363 - 370
  • [24] Ultra-limited-angle CT image reconstruction algorithm based on reweighting and edge-preserving
    Shi, Lei
    Qu, Gangrong
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (02) : 319 - 331
  • [25] Comparison of cone-beam (CB) reconstruction algorithms in spiral computed tomography (CT)
    Sourbelle, K
    Lauritsch, G
    Tam, KC
    Kachelriess, M
    Kalender, WA
    RADIOLOGY, 2002, 225 : 253 - 253
  • [26] Minimum data image reconstruction algorithms with shift-invariant filtering for helical, cone-beam CT
    Sidky, EY
    Zou, Y
    Pan, XC
    PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (08): : 1643 - 1657
  • [27] Cone-Beam CT Lag Correction Models: Effect of Optimized Parameter Selection
    Mail, N.
    Moseley, D.
    Siewerdsen, J.
    Jaffray, D.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [28] High quality 4D cone-beam CT reconstruction using motion-compensated total variation regularization
    Zhang, Hua
    Ma, Jianhua
    Bian, Zhaoying
    Zeng, Dong
    Feng, Qianjin
    Chen, Wufan
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (08): : 3313 - 3329
  • [29] Efficient reconstruction from truncated data in circular cone-beam CT
    Wang Xian-Chao
    Yan Bin
    Liu Hong-Kui
    Li Lei
    Wei Xing
    Hu Guo-En
    ACTA PHYSICA SINICA, 2013, 62 (09)
  • [30] New multiscale transforms, minimum total variation synthesis:: applications to edge-preserving image reconstruction
    Candès, EJ
    Guo, F
    SIGNAL PROCESSING, 2002, 82 (11) : 1519 - 1543