Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

被引:22
|
作者
Lohvithee, Manasavee [1 ]
Biguri, Ander [1 ]
Soleimani, Manuchehr [1 ]
机构
[1] Univ Bath, ETL, Bath, Avon, England
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2017年 / 62卷 / 24期
关键词
total variation (TV); edge preserving function; parameter tuning; iterative reconstruction; limited data reconstruction; TOTAL-VARIATION MINIMIZATION; COMPUTED-TOMOGRAPHY; IMAGE-RECONSTRUCTION; ITERATIVE ALGORITHMS; RADIATION-EXPOSURE; NOISE; SART;
D O I
10.1088/1361-6560/aa93d3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.
引用
收藏
页码:9295 / 9321
页数:27
相关论文
共 50 条
  • [1] Cone-beam algebraic reconstruction using edge-preserving regularization
    Laurette, I
    Koulibaly, PM
    BlancFeraud, L
    Charbonnier, P
    Nosmas, JC
    Barlaud, M
    Darcourt, J
    THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 1996, 4 : 59 - 73
  • [2] CT Reconstruction from Undersampled Projection Data Via Edge-Preserving Total Variation Regularization
    Tian, Z.
    Xun, J.
    Yuan, K.
    Jiang, S.
    MEDICAL PHYSICS, 2010, 37 (06)
  • [3] Low-dose CT reconstruction via edge-preserving total variation regularization
    Tian, Zhen
    Jia, Xun
    Yuan, Kehong
    Pan, Tinsu
    Jiang, Steve B.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (18): : 5949 - 5967
  • [4] Evaluation of helical cone-beam CT reconstruction algorithms
    Köhler, T
    Bontus, C
    Brown, K
    Heuscher, D
    Grass, M
    Shechter, G
    Proksa, R
    2002 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-3, 2003, : 1217 - 1220
  • [5] GPU-based Iterative CT Reconstruction via Edge-preserving Total Variation Regula
    Tian, Z.
    Jia, X.
    Pan, T.
    Jiang, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 78 (03): : S638 - S638
  • [6] Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization
    Stsepankou, D.
    Arns, A.
    Ng, S. K.
    Zygmanski, P.
    Hesser, J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (19): : 5955 - 5970
  • [7] Benchmarking of different reconstruction algorithms for industrial cone-beam CT
    Rathore, Jitendra Singh
    Laquai, René
    Biguri, Ander
    Soleimani, Manuchehr
    Vienne, Caroline
    e-Journal of Nondestructive Testing, 2022, 27 (03):
  • [8] Edge-preserving seismic imaging using the total variation method
    Anagaw, Amsalu Y.
    Sacchi, Mauricio D.
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2012, 9 (02) : 138 - 146
  • [9] Iterative reconstruction of cone-beam CT data on a cluster
    Benson, Thomas M.
    Gregor, Jens
    COMPUTATIONAL IMAGING V, 2007, 6498
  • [10] An edge-preserving total nuclear variation minimization algorithm in EPR image reconstruction
    Liu, Peng
    Fang, Chenyun
    Qiao, Zhiwei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87