PRACTICAL SKETCHING ALGORITHMS FOR LOW-RANK MATRIX APPROXIMATION

被引:110
|
作者
Tropp, Joel A. [1 ]
Yurtsever, Alp [2 ]
Udell, Madeleine [3 ]
Cevher, Volkan [2 ]
机构
[1] CALTECH, Comp & Math Sci, Pasadena, CA 91125 USA
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] Cornell Univ, Ithaca, NY 14853 USA
关键词
dimension reduction; matrix approximation; numerical linear algebra; randomized algorithm; single-pass algorithm; sketching; streaming algorithm; subspace embedding; DIMENSIONALITY REDUCTION; RANDOMIZED ALGORITHM; LINEAR ALGEBRA;
D O I
10.1137/17M1111590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image, or sketch, of the matrix. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.
引用
收藏
页码:1454 / 1485
页数:32
相关论文
共 50 条
  • [31] Decentralized sketching of low-rank matrices
    Srinivasa, Rakshith S.
    Lee, Kiryung
    Junge, Marius
    Romberg, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [32] Approximation Schemes for Low-rank Binary Matrix Approximation Problems
    Fomin, Fedor, V
    Golovach, Petr A.
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (01)
  • [33] Practical Low-Rank Matrix Approximation under Robust L1-Norm
    Zheng, Yinqiang
    Liu, Guangcan
    Sugimoto, Shigeki
    Yan, Shuicheng
    Okutomi, Masatoshi
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1410 - 1417
  • [34] Pass-efficient randomized LU algorithms for computing low-rank matrix approximation
    Zhang, Bolong
    Mascagni, Michael
    MONTE CARLO METHODS AND APPLICATIONS, 2023, : 181 - 202
  • [35] Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
    Drineas, Petros
    Kannan, Ravi
    Mahoney, Michael W.
    SIAM JOURNAL ON COMPUTING, 2006, 36 (01) : 158 - 183
  • [36] Constant modulus algorithms via low-rank approximation
    Adler, Amir
    Wax, Mati
    SIGNAL PROCESSING, 2019, 160 : 263 - 270
  • [37] Matrix Completion via Successive Low-rank Matrix Approximation
    Wang, Jin
    Mo, Zeyao
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2023, 10 (03)
  • [38] Convergence of Gradient Descent for Low-Rank Matrix Approximation
    Pitaval, Renaud-Alexandre
    Dai, Wei
    Tirkkonen, Olav
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (08) : 4451 - 4457
  • [39] Supervised Quantile Normalization for Low-rank Matrix Approximation
    Cuturi, Marco
    Teboul, Olivier
    Niles-Weed, Jonathan
    Vert, Jean-Philippe
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [40] RANDOMIZED LOW-RANK APPROXIMATION OF MONOTONE MATRIX FUNCTIONS
    Persson, David
    Kressner, Daniel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (02) : 894 - 918