Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics

被引:137
|
作者
Wang, Xiaofeng [1 ]
Yin, Yajiang [1 ]
Yi, Fang [2 ,3 ]
Dai, Keren [1 ]
Niu, Simiao [4 ]
Han, Yingzhou [1 ]
Zhang, Yue [2 ]
You, Zheng [1 ]
机构
[1] Tsinghua Univ, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Sch Mat Sci & Engn, Beijing Municipal Key Lab New Energy Mat & Techno, Beijing 100083, Peoples R China
[3] Peking Univ, Ctr Nanochem, Beijing Sci & Engn Ctr Nanocarbons, Beijing Natl Lab Mol Sci,Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Stretchable; Energy-harvesting skin; Self-charging power unit; Sustainable energy; BIOMECHANICAL ENERGY; GENERATING ELECTRICITY; MOTION SENSOR; SHOE INSOLE; VIBRATION; WALKING; PRESSURE; SYSTEM;
D O I
10.1016/j.nanoen.2017.07.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A bioinspired soft and stretchable triboelectric nanogenerator (TENG) is developed as energy-harvesting skin to drive personal electronics by scavenging biomechanical energy. Drawn inspiration from biological cells, the TENG consists of patterned interconnected cellular structures, with physiological saline as the electrode and silicone rubber as the encapsulation and triboelectric layer. The TENG can withstand a strain of 600% and has a transmittance of as high as 62.5%. The TENG can keep its high performance under various strain. The TENG also has the desirable features of biocompatibility, simple fabrication, light weight and environmental protection. The maximum instantaneous power density (2.3 Hz) and direct current power density of the TENG are similar to 11.6 W/m(2) and similar to 2.65 mW/m(2) respectively. Mounted on the skin, the TENG integrating with a power management unit can sustainably drive an electronic watch sorely by harvesting energy from hand motion. A stretchable self-charging power unit with a TENG and a micro supercapacitor sharing the same solution is created, with the solution as both the electrode of the TENG and the electrolyte of the supercapacitor. This work opens up new insights for clean power sources of skin-mounted electronics and promotes the development of sustainable energy supply for wearable and portable electronics.
引用
收藏
页码:429 / 436
页数:8
相关论文
共 50 条
  • [21] A bioinspired triboelectric nanogenerator for all state energy harvester and self-powered rotating monitor
    Ma, Guoliang
    Li, Bo
    Niu, Shichao
    Zhang, Junqiu
    Wang, Dakai
    Wang, Ze
    Zhou, Liang
    Liu, Qiang
    Liu, Linpeng
    Wang, Jingxiang
    Han, Zhiwu
    Ren, Luquan
    NANO ENERGY, 2022, 91
  • [22] Self-powered skin electronics for energy harvesting and healthcare monitoring
    Wu, M.
    Yao, K.
    Li, D.
    Huang, X.
    Liu, Y.
    Wang, L.
    Song, E.
    Yu, J.
    Yu, X.
    MATERIALS TODAY ENERGY, 2021, 21
  • [23] Water Energy Harvesting and Self-Powered Visible Light Communication Based on Triboelectric Nanogenerator
    Wang, Jie
    Zhang, Hulin
    Xie, Xiaoyu
    Gao, Min
    Yang, Weiqing
    Lin, Yuan
    ENERGY TECHNOLOGY, 2018, 6 (10) : 1929 - 1934
  • [24] Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System
    Yang, Ya
    Zhu, Guang
    Zhang, Hulin
    Chen, Jun
    Zhong, Xiandai
    Lin, Zong-Hong
    Su, Yuanjie
    Bai, Peng
    Wen, Xiaonan
    Wang, Zhong Lin
    ACS NANO, 2013, 7 (10) : 9461 - 9468
  • [25] Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing
    Zhou, Kangkang
    Zhao, Yi
    Sun, Xiupeng
    Yuan, Zuqing
    Zheng, Guoqiang
    Dai, Kun
    Mi, Liwei
    Pan, Caofeng
    Liu, Chuntai
    Shen, Changyu
    NANO ENERGY, 2020, 70 (70)
  • [26] Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
    He, Meng
    Du, Wenwen
    Feng, Yanmin
    Li, Shijie
    Wang, Wei
    Zhang, Xiang
    Yu, Aifang
    Wan, Lingyu
    Zhai, Junyi
    NANO ENERGY, 2021, 86
  • [27] Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
    He, Meng
    Du, Wenwen
    Feng, Yanmin
    Li, Shijie
    Wang, Wei
    Zhang, Xiang
    Yu, Aifang
    Wan, Lingyu
    Zhai, Junyi
    Nano Energy, 2021, 86
  • [28] Self-Powered Sensors and Flexible Triboelectric Nanogenerator for Powering Portable Electronics
    Sarkar, Piyush Kanti
    Maji, Subrata
    Acharya, Somobrata
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (03) : 1741 - 1746
  • [29] Polyvinyl alcohol-based economical triboelectric nanogenerator for self-powered energy harvesting applications
    Amini, Sebghatullah
    Ahmed, Rumana Farheen Sagade Muktar
    Ankanathappa, Sangamesha Madanahalli
    Sannathammegowda, Krishnaveni
    NANOTECHNOLOGY, 2024, 35 (03)
  • [30] Biomechanical Energy Harvesting Triboelectric Nanogenerator As A Self Powered Sensor
    Charanya, Sukumaran
    Chandrasekhar, Arunkumar
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265