Multi-temporal cloud detection based on robust PCA for optical remote sensing imagery

被引:17
|
作者
Zhang, Hongyan [1 ]
Huang, Qi [1 ]
Zhai, Han [2 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[2] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-temporal cloud detection; Robust PCA; Optical remote sensing images; AUTOMATED CLOUD; SNOW DETECTION; LANDSAT DATA; SHADOW; ALGORITHM; FOREST;
D O I
10.1016/j.compag.2021.106342
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Cloud detection is an essential pre-processing step for optical remote sensing imagery in various applications due to the huge negative effect of cloud occlusion. Multi-temporal cloud detection methods are usually more effective than single-image based methods by providing extra temporal information, which is a worthwhile supplement to spatial-spectral information for distinguishing clouds from clear-sky observations. Nevertheless, most of the existing multi-temporal cloud detection algorithms cannot estimate the cloud-free reference background accurately, especially when pixels have no or very few clear-sky observations in time series data, which limits the performance of cloud detection to a large degree. To deal with this problem, a novel multi-temporal cloud detection method based on robust principal component analysis (MCD-RPCA) is proposed for optical remote sensing imagery. Firstly, several spectral tests are performed to extract spectral features based on the physical attributes of clouds and obtain an initial rough cloud mask. Secondly, a low-rank matrix decomposition model, known as robust principal component analysis (RPCA), is constructed based on multi-temporal images to estimate the cloud-free background. By detecting the change between the cloudy image and the estimated clear-sky background image, a change cloud mask can be obtained by the extraction of temporal information. A refined cloud mask is then acquired by taking the intersection of the initial cloud mask and the change cloud mask. Lastly, multiple spatial morphological processing steps are implemented to incorporate the spatial information to further refine the cloud detection map. By fully exploiting the spectral-temporal-spatial features of clouds in optical remote sensing images, the proposed MCD-PRCA method seeks to facilitate the estimation of the clear background component and support the improved detection of cloudy pixels. The performance of MCD-RPCA was evaluated on four Landsat-8 OLI images from the Biome dataset and three popular cloud detection methods were used as benchmarks for comparisons. In general, a mean overall accuracy of 93.79% was achieved by the proposed MCD-RPCA method, outperforming the other state-of-the-art cloud detection algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Multi-temporal assessment of a wildfire chronosequence by remote sensing
    Ferrari, F. Najera De
    Duarte, E.
    Smith-Ramirez, C.
    Rendon-Funes, A.
    Gonzalez, V. Sepulveda
    Gonzalez, N. Sepulveda
    Levio, M. F.
    Rubilar, R.
    Stehr, A.
    Merino, C.
    Jofre, I.
    Rojas, C.
    Aburto, F.
    Kuzyakov, Y.
    Filimonenko, E.
    Doerner, J.
    Pereira, P.
    Matus, F.
    METHODSX, 2024, 13
  • [42] CDnet: CNN-Based Cloud Detection for Remote Sensing Imagery
    Yang, Jingyu
    Guo, Jianhua
    Yue, Huanjing
    Liu, Zhiheng
    Hu, Haofeng
    Li, Kun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 6195 - 6211
  • [43] MULTI-TEMPORAL CHANGE DETECTION BASED ON CHINA'S DOMESTIC HYPERSPECTRAL REMOTE SENSING SATELLITE IMAGES
    Lu, Xuanning
    Liu, Sicong
    Du, Kechen
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVIII, 2022, 12267
  • [44] Geometric Accuracy Improvement Method for High-Resolution Optical Satellite Remote Sensing Imagery Combining Multi-Temporal SAR Imagery and GLAS Data
    Zhu, Quansheng
    Jiang, Wanshou
    Zhu, Ying
    Li, Linze
    REMOTE SENSING, 2020, 12 (03)
  • [45] An Efficient Approach to Remove Thick Cloud in VNIR Bands of Multi-Temporal Remote Sensing Images
    Du, Wenhui
    Qin, Zhihao
    Fan, Jinlong
    Gao, Maofang
    Wang, Fei
    Abbasi, Bilawal
    REMOTE SENSING, 2019, 11 (11)
  • [46] RESEARCH OF CLOUD DETECTION BASED ON MULTI-TEMPORAL THERMAL INFRARED DATA
    Wang, Jie
    Qi, Jianwei
    Liu, Yu
    Wang, Guanghui
    Zhang, Tao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5399 - 5402
  • [47] Delineation of riparian vegetation from Landsat multi-temporal imagery using PCA
    Alaibakhsh, Masoomeh
    Emelyanova, Irina
    Barron, Olga
    Sims, Neil
    Khiadani, Mehdi
    Mohyeddin, Alireza
    HYDROLOGICAL PROCESSES, 2017, 31 (04) : 800 - 808
  • [48] Evaluation of Ecological Environmental Quality Based on Multi-temporal Remote Sensing Data
    Li, Jie
    Tan, Kun
    Ou, Depin
    Chen, Yu
    Xu, Kailei
    Ding, Jianwei
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [49] Crop Identification Based on Multi-Temporal Active and Passive Remote Sensing Images
    Zhang, Hebing
    Yuan, Hongyi
    Du, Weibing
    Lyu, Xiaoxuan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)
  • [50] STUDY ON FOREST VEGETATION CLASSIFICATION BASED ON MULTI-TEMPORAL REMOTE SENSING IMAGES
    Jing, Xia
    Wang, JiHua
    Huang, WenJiang
    Liu, LiangYun
    Wang, JinDi
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE II, VOL 1, 2009, 293 : 115 - +