Compensation Topologies of High-Power Wireless Power Transfer Systems

被引:644
|
作者
Zhang, Wei [1 ]
Mi, Chunting Chris [2 ]
机构
[1] Univ Michigan, Dearborn, MI 48128 USA
[2] San Diego State Univ, Dept Elect & Comp Engn, San Diego, CA 92182 USA
关键词
Compensation topology; efficiency; input zero phase angle (ZPA); load-independent voltage and current output; soft switching; wireless power transfer (WPT) system; ENERGY TRANSMISSION; DESIGN CONSIDERATIONS; BATTERY CHARGER;
D O I
10.1109/TVT.2015.2454292
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wireless power transfer ( WPT) is an emerging technology that can realize electric power transmission over certain distances without physical contact, offering significant benefits to modern automation systems, medical applications, consumer electronics, etc. This paper provides a comprehensive review of existing compensation topologies for the loosely coupled transformer. Compensation topologies are reviewed and evaluated based on their basic and advanced functions. Individual passive resonant networks used to achieve constant ( load-independent) voltage or current output are analyzed and summarized. Popular WPT compensation topologies are given as application examples, which can be regarded as the combination of multiple blocks of resonant networks. Analyses of the input zero phase angle and soft switching are conducted as well. This paper also discusses the compensation requirements for achieving the maximum efficiency according to different WPT application areas.
引用
收藏
页码:4768 / 4778
页数:11
相关论文
共 50 条
  • [21] Optimization of the Compensation Capacitors for Megahertz Wireless Power Transfer Systems
    Tang, Zefan
    Fu, Minfan
    Liu, Ming
    Ma, Chengbin
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 1447 - 1452
  • [22] Multiobjective optimization of compensation networks for wireless power transfer systems
    Bertoluzzo, Manuele
    Di Barba, Paolo
    Forzan, Michele
    Mognaschi, Maria Evelina
    Sieni, Elisabetta
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 41 (02) : 674 - 689
  • [23] Study on Coil Sizing and Shielding Materials High-Power Wireless Power Transfer Systems for Electric Vehicle Charging
    Damhuis, Carina
    Kraus, Denis
    Herzog, Hans-Georg
    2022 WIRELESS POWER WEEK (WPW), 2022, : 514 - 519
  • [24] A Comparison Study of Compensation Topologies for Capacitive Power Transfer
    Gao, Feng
    Wang, Zhenpo
    Deng, Junjun
    Wang, Shuo
    Wang, Yachao
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 691 - 696
  • [25] High-Frequency, High-Power Resonant Inverter With eGaN FET for Wireless Power Transfer
    Choi, Jungwon
    Tsukiyama, Daisuke
    Tsuruda, Yoshinori
    Davila, Juan Manuel Rivas
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (03) : 1890 - 1896
  • [26] Orthogonal-Frequency Simultaneous Wireless Power and Data Transfer for High-Power Wireless EV Charging
    Liu, Chengyin
    Zhang, Yi
    Chen, Hao
    Wu, Jiande
    He, Xiangning
    ENERGIES, 2024, 17 (08)
  • [27] Analysis and design of hybrid inductive and capacitive wireless power transfer for high-power applications
    Luo, Bo
    Long, Tao
    Mai, Ruikun
    Dai, Ruimin
    He, Zhengyou
    Li, Weihua
    IET POWER ELECTRONICS, 2018, 11 (14) : 2263 - 2270
  • [28] Design of high-power static wireless power transfer via magnetic induction: An overview
    Zhang Y.
    Chen S.
    Li X.
    Tang Y.
    CPSS Transactions on Power Electronics and Applications, 2021, 6 (04): : 281 - 297
  • [29] A Power Dividing Rectenna System for High-Power Wireless Power Transfer for 2.45-GHz Band
    Kim, Do Hyeon
    Oh, Soo Young
    Park, Hong Soo
    Hong, Sun K.
    IEEE ACCESS, 2024, 12 : 86631 - 86638
  • [30] A novel enhancing electric vehicle charging: an updated analysis of wireless power transfer compensation topologies
    Bachhati Latha
    Mohammed Mujahid Irfan
    Butukuri Koti Reddy
    C. H. Hussaian Basha
    Discover Applied Sciences, 7 (4)