Effect of burst disk parameters on the release of high-pressure hydrogen

被引:43
|
作者
Gong, Liang [1 ]
Duan, Qiangling [1 ]
Liu, Jialong [1 ]
Li, Mi [1 ]
Jin, Kaiqiang [1 ]
Sun, Jinhua [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
High-pressure hydrogen; Spontaneous ignition; Opening ratios; Shock waves; SPONTANEOUS SELF-IGNITION; FLAME PROPAGATION; TUBE; AIR; GEOMETRY; GAS; VISUALIZATION; DISCHARGE; DUCT; JET;
D O I
10.1016/j.fuel.2018.08.044
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen is regarded as an alternative energy carrier in the next decades and high-pressure hydrogen storage is treated as the best option. However, unexpected spontaneous ignition would occur during high-pressure hydrogen sudden release, which induces a severe safety issue. For improving the safety application of hydrogen, an experimental investigation has been conducted. Different diameter ring gaskets are employed to change the opening ratio chi. Pressure transducers and light sensors are used to record the pressure variation and possible light signals inside the tube, respectively. It is found that the burst disk is unable to fully open during high-pressure hydrogen release when chi < 1, resulting in forming a convergent nozzle. This structure leads to the speed reduction for supersonic flow. Consequently, the speed of shock and shock overpressure inside the tube reduce significantly. The spontaneous ignition cannot be initiated even though the initial pressure ratio is as high as 90 when chi <= 1/2. The minimum initial pressure ratio required for spontaneous ignition increases to 64.1 when chi = 2/3. The flame is dimmer for small opening ratio cases. The shock overpressure outside the tube is reduced significantly, which decreases the damage to the facilities and humans to a large extent.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条
  • [41] PERFORMANCE OF A HIGH-PRESSURE HYDROGEN TPC
    CHAPIN, TJ
    COOL, RL
    GOULIANOS, K
    JENKINS, KA
    SILVERMAN, JP
    SNOW, GR
    STICKER, H
    WHITE, SN
    CHOU, YH
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1984, 225 (03): : 550 - 556
  • [42] High-pressure melting curve of hydrogen
    Davis, Sergio M.
    Belonoshko, Anatoly B.
    Johansson, Borje
    Skorodumova, Natalia V.
    van Duin, Adri C. T.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (19):
  • [43] CHARACTERIZATION OF HIGH-PRESSURE HYDROGEN LEAKAGES
    Cerbarano, Davide
    Lo Schiavo, Ermanno
    Tieghi, Lorenzo
    Delibra, Giovanni
    Minotti, Stefano
    Corsini, Alessandro
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 2, 2023,
  • [44] Known unknowns in high-pressure hydrogen
    不详
    NATURE PHYSICS, 2005, 1 (01) : 8 - 8
  • [45] High-Pressure Sorption of Hydrogen in Urea
    Safari, F.
    Tkacz, M.
    Katrusiak, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (14): : 7756 - 7762
  • [46] On the Features of Numerical Simulation of Hydrogen Self-Ignition under High-Pressure Release
    Kiverin, Alexey
    Yarkov, Andrey
    Yakovenko, Ivan
    COMPUTATION, 2024, 12 (05)
  • [47] Consequence analysis of vapour cloud explosion from the release of high-pressure hydrogen storage
    Sun, Biao
    Loughnan, Thomas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 80 : 1137 - 1150
  • [48] ISOTOPE EFFECT ON HIGH-PRESSURE BEHAVIOR OF HYDROGEN-BONDED CRYSTALS
    MACKOWIAK, M
    PHYSICA B & C, 1987, 145 (03): : 320 - 328
  • [49] Numerical study of the effect of obstacles on the spontaneous ignition of high-pressure hydrogen
    Morii, Youhi
    Terashima, Hiroshi
    Koshi, Mitsuo
    Shimizu, Taro
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2015, 34 : 92 - 99
  • [50] Effect of high-pressure hydrogen environment on the physical and mechanical properties of elastomers
    Theiler, Geraldine
    Murillo, Natalia Cano
    Halder, Karabi
    Balasooriya, Winoj
    Hausberger, Andreas
    Kaiser, Andreas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 389 - 399