Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries

被引:139
|
作者
Shi, Lu [1 ,2 ,3 ]
Wang, Weikun [3 ]
Wang, Anbang [3 ]
Yuan, Keguo [3 ]
Jin, Zhaoqing [3 ]
Yang, Yusheng [3 ]
机构
[1] Xinxiang Univ, Coll Chem & Chem Engn, Xinxiang 453003, Henan, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[3] Res Inst Chem Def, Mil Power Sources Res & Dev Ctr, Beijing 100191, Peoples R China
关键词
SiOx; Core-shell structure; Polydopamine coating; Uniform nitrogen-doped carbon coating layer; Lithium-ion batteries; SI NANOPARTICLES; GRAPHENE SHEETS; POROUS SI; NANOCOMPOSITE; NITROGEN; NANOWIRES; FABRICATION; ELECTRODE; STORAGE; ALLOY;
D O I
10.1016/j.jpowsour.2016.03.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a novel core-shell structured SiOx/nitrogen-doped carbon composite has been prepared by simply dispersing the SiOx particles, which are synthesized by a thermal evaporation method from an equimolar mixture of Si and SiO2, into the dopamine solution, followed by a carbonization process. The SiOx core is well covered by the conformal and homogeneous nitrogen-doped carbon layer from the pyrolysis of polydopamine. By contrast with the bare SiOx, the electrochemical performance of the as prepared core-shell structured SiOx/nitrogen-doped carbon composite has been improved significantly. It delivers a reversible capacity of 1514 mA h g-1 after 100 cycles at a current density of 100 mA g(-1) and 933 mA h g(-1) at 2 A g(-1), much higher than those of commercial graphite anodes. The nitrogen-doped carbon layer ensures the excellent electrochemical performance of the SiOx/C composite. In addition, since dopamine can self-polymerize and coat virtually any surface, this versatile, facile and highly efficient coating process may be widely applicable to obtain various composites with uniform nitrogen doped carbon coating layer. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 191
页数:8
相关论文
共 50 条
  • [21] Facile Synthesis of Molybdenum Disulfide Nanosheets/Nitrogen-Doped Porous Carbon Composites for High-Performance Anode Material in Lithium-Ion Batteries
    Guo, Shuainan
    Zhang, Qian
    Zhu, Zhixin
    Xie, Jiawei
    Fan, Jinchen
    Xu, Qunjie
    Shi, Penghui
    Min, Yulin
    CHEMISTRYSELECT, 2017, 2 (10): : 3117 - 3128
  • [22] Facile and Efficient Synthesis of a Microsized SiOx/C Core-Shell Composite as Anode Material for Lithium Ion Batteries
    Zhang, Junying
    Zhang, Xiaoming
    Zhang, Chunqian
    Liu, Zhi
    Zheng, Jun
    Zuo, Yuhua
    Xue, Chunlai
    Li, Chuanbo
    Cheng, Buwen
    ENERGY & FUELS, 2017, 31 (08) : 8758 - 8763
  • [23] Core-shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries
    Xing, Yan
    Zhang, Liyuan
    Mao, Songke
    Wang, Xiuli
    Wenren, Hongyan
    Xia, Xinhui
    Gu, Changdong
    Tu, Jiangping
    MATERIALS RESEARCH BULLETIN, 2018, 108 : 170 - 175
  • [24] Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries
    Tao, Huachao
    Fan, Li-Zhen
    Song, Wei-Li
    Wu, Mao
    He, Xinbo
    Qu, Xuanhui
    NANOSCALE, 2014, 6 (06) : 3138 - 3142
  • [25] Scalable synthesis of high-performance anode material SiOx/C for lithium-ion batteries by employing the Rochow reaction process
    Gao X.
    Gao Y.
    Li Q.
    Wang Y.
    Zhao D.
    Xu G.
    Zhong Z.
    Su F.
    Journal of Alloys and Compounds, 2022, 902
  • [26] Nitrogen-doped carbon/SiOxcomposites from rice husks as a high-performance anode for lithium-ion batteries
    Song, Jiajia
    Guo, Shouwu
    Kou, Lingjiang
    Liu, Hui
    Kajiyoshi, Koji
    Su, Jiaxin
    Zheng, Peng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (18) : 16037 - 16043
  • [27] Scalable synthesis of high-performance anode material SiOx/C for lithium-ion batteries by employing the Rochow reaction process
    Gao, Xingyue
    Gao, Yuan
    Li, Qiongguang
    Wang, Yanhong
    Zhao, Dawei
    Xu, Guangwen
    Zhong, Ziyi
    Su, Fabing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 902
  • [28] Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries
    Bhattacharjya, Dhrubajyoti
    Park, Hyean-Yeol
    Kim, Min-Sik
    Choi, Hyuck-Soo
    Inamdar, Shaukatali N.
    Yu, Jong-Sung
    LANGMUIR, 2014, 30 (01) : 318 - 324
  • [29] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    RareMetals, 2019, 38 (03) : 199 - 205
  • [30] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    Rare Metals, 2019, 38 : 199 - 205