Approximation properties of periodic multivariate quasi-interpolation operators

被引:6
|
作者
Kolomoitsev, Yurii [1 ]
Prestin, Juergen [1 ]
机构
[1] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Quasi-interpolation operators; Interpolation; Kantorovich-type operators; Best approximation; Moduli of smoothness; K-functionals; Besov spaces; TRIGONOMETRIC INTERPOLATION; KANTOROVICH; CONVERGENCE; SPACES; ERROR; ORDER;
D O I
10.1016/j.jat.2021.105631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study approximation properties of general multivariate periodic quasi-interpolation operators, which are generated by distributions/functions (phi) over tilde (j) and trigonometric polynomials and trigonometric polynomials phi(j). The class of such operators includes classical interpolation polynomials ((phi) over tilde (j) is the Dirac delta function), Kantorovich-type operators ((phi) over tilde (j) is a characteristic function), scaling expansions associated with wavelet constructions, and others. Under different compatibility conditions on (phi) over tilde (j )and phi(j), we obtain upper and lower bound estimates for the L-p-error of approximation by quasi-interpolation operators in terms of the best and best one-sided approximation, classical and fractional moduli of smoothness, K-functionals, and other terms. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Trivariate near-best blending spline quasi-interpolation operators
    Barrera, D.
    Dagnino, C.
    Ibanez, M. J.
    Remogna, S.
    NUMERICAL ALGORITHMS, 2018, 78 (01) : 217 - 241
  • [42] Quasi-interpolation operators based on a cubic spline and applications in SAMR simulations
    Ma, Libin
    Mo, Zeyao
    Xu, Xiaowen
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 3853 - 3868
  • [43] Quasi-interpolation in the Fourier algebra
    Feichtinger, Hans G.
    Kaiblinger, Norbert
    JOURNAL OF APPROXIMATION THEORY, 2007, 144 (01) : 103 - 118
  • [44] Rational Quasi-Interpolation Approximation of Scattered Data in R3
    Feng, Renzhong
    Song, Lifang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (01) : 169 - 186
  • [45] Quasi-interpolation and outliers removal
    Amir, Anat
    Levin, David
    NUMERICAL ALGORITHMS, 2018, 78 (03) : 805 - 825
  • [46] Approximation to the k-th derivatives by multiquadric quasi-interpolation method
    Ma, Limin
    Wu, Zongmin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) : 925 - 932
  • [47] Quasi-interpolation and outliers removal
    Anat Amir
    David Levin
    Numerical Algorithms, 2018, 78 : 805 - 825
  • [48] Approximate Hermite quasi-interpolation
    Lanzara, F.
    Maz'ya, V.
    Schmidt, G.
    APPLICABLE ANALYSIS, 2008, 87 (07) : 805 - 827
  • [49] Quasi-interpolation in Riemannian manifolds
    Grohs, Philipp
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 849 - 874
  • [50] Simultaneous interpolation and approximation by a class of multivariate positive operators
    Allasia, G
    NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 147 - 158