Approximation properties of periodic multivariate quasi-interpolation operators

被引:6
|
作者
Kolomoitsev, Yurii [1 ]
Prestin, Juergen [1 ]
机构
[1] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Quasi-interpolation operators; Interpolation; Kantorovich-type operators; Best approximation; Moduli of smoothness; K-functionals; Besov spaces; TRIGONOMETRIC INTERPOLATION; KANTOROVICH; CONVERGENCE; SPACES; ERROR; ORDER;
D O I
10.1016/j.jat.2021.105631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study approximation properties of general multivariate periodic quasi-interpolation operators, which are generated by distributions/functions (phi) over tilde (j) and trigonometric polynomials and trigonometric polynomials phi(j). The class of such operators includes classical interpolation polynomials ((phi) over tilde (j) is the Dirac delta function), Kantorovich-type operators ((phi) over tilde (j) is a characteristic function), scaling expansions associated with wavelet constructions, and others. Under different compatibility conditions on (phi) over tilde (j )and phi(j), we obtain upper and lower bound estimates for the L-p-error of approximation by quasi-interpolation operators in terms of the best and best one-sided approximation, classical and fractional moduli of smoothness, K-functionals, and other terms. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Approximation by quasi-interpolation operators and Smolyak's algorithm
    Kolomoitsev, Yurii
    JOURNAL OF COMPLEXITY, 2022, 69
  • [2] Properties of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines
    Bozzini, Mira
    Rossini, Milvia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 267 : 96 - 106
  • [3] On Quasi-Interpolation Operators in Spline Spaces
    Buffa, Annalisa
    Garau, Eduardo M.
    Giannelli, Carlotta
    Sangalli, Giancarlo
    BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 : 73 - 91
  • [4] APPROXIMATION OF MULTIVARIATE FUNCTIONS ON SPARSE GRIDS BY KERNEL-BASED QUASI-INTERPOLATION
    Jeong, Byeongseon
    Kersey, Scott N.
    Yoon, Jungho
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A953 - A979
  • [5] QUANTITATIVE APPROXIMATION BY KANTOROVICH-CHOQUET QUASI-INTERPOLATION NEURAL NETWORK OPERATORS
    Anastassiou, G. A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (01): : 113 - 130
  • [6] A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction
    Wu, Ruifeng
    Wu, Tieru
    Li, Huilai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 274 : 88 - 108
  • [7] Approximation by periodic multivariate quasi-projection operators
    Kolomoitsev, Yu
    Krivoshein, A.
    Skopina, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (02)
  • [8] FINITE ELEMENT QUASI-INTERPOLATION AND BEST APPROXIMATION
    Ern, Alexandre
    Guermond, Jean-Luc
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04): : 1367 - 1385
  • [9] A MULTIVARIATE MULTIQUADRIC QUASI-INTERPOLATION WITH QUADRIC REPRODUCTION
    Feng, Renzhong
    Zhou, Xun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (03) : 311 - 323
  • [10] A NATURAL FORMULATION OF QUASI-INTERPOLATION BY MULTIVARIATE SPLINES
    CHUI, CK
    DIAMOND, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) : 643 - 646