Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

被引:36
|
作者
Malek, Ali [1 ]
Balawender, Robert [1 ]
机构
[1] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 142卷 / 05期
关键词
SOFT ACIDS; BASES HSAB; ELECTRONEGATIVITY;
D O I
10.1063/1.4906555
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] On Hardness and Electronegativity Equalization in Chemical Reactivity Theory
    Morrel H. Cohen
    Adam Wasserman
    Journal of Statistical Physics, 2006, 125 : 1121 - 1139
  • [12] On hardness and electronegativity equalization in chemical reactivity theory
    Cohen, Morrel H.
    Wasserman, Adam
    JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (5-6) : 1125 - 1143
  • [13] Chemistry of xenon derivatives. Synthesis and chemical properties
    Brel, VK
    Pirguliyev, NS
    Zefirov, NS
    USPEKHI KHIMII, 2001, 70 (03) : 262 - 298
  • [14] Chemistry of xenon derivatives. Synthesis and chemical properties
    Brel, V.K.
    Pirkuliev, N.Sh.
    Zefirov, N.S.
    Russian Chemical Reviews, 2001, 70 (03) : 231 - 264
  • [15] SOME INDICES OF CHEMICAL REACTIVITY OF NITROGEN HETEROBENZENES
    KWIATKOWSKI, S
    ZURAWSKI, B
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1965, 13 (07): : 487 - +
  • [16] Role of Chemical Reactivity and Transition State Modeling for Virtual Screening
    Karthikeyan, Muthukumarasamy
    Vyas, Renu
    Tambe, Sanjeev S.
    Radhamohan, Deepthi
    Kulkarni, Bhaskar D.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2015, 18 (07) : 638 - 657
  • [17] Chemical reactivity and the shape function
    Geerlings, P.
    Ayers, P. W.
    De Proft, F.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 1186 - 1186
  • [18] Chemical hardness: Temperature dependent definitions and reactivity principles
    Miranda-Quintana, Ramon Alain
    Franco-Perez, Marco
    Gazquez, Jose L.
    Ayers, Paul W.
    Vela, Alberto
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (12):
  • [19] INTERMEDIATE HARDNESS DECOUPLING SCHEMES FOR CHEMICAL-REACTIVITY
    NALEWAJSKI, RF
    KORCHOWIEC, J
    MICHALAK, A
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 1994, 106 (02): : 353 - 378
  • [20] ABSOLUTE ELECTRONEGATIVITY, ABSOLUTE HARDNESS, AND CHEMICAL-REACTIVITY
    PEARSON, RG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 192 : 157 - PHYS