Performance Assessment of Multiple Machine Learning Classifiers for Detecting the Phishing URLs

被引:3
|
作者
Rahman, Sheikh Shah Mohammad Motiur [1 ]
Rafiq, Fatama Binta [1 ]
Toma, Tapushe Rabaya [1 ]
Hossain, Syeda Sumbul [1 ]
Biplob, Khalid Been Badruzzaman [1 ]
机构
[1] Daffodil Int Univ, Dept Software Engn, Dhaka, Bangladesh
关键词
Phishing; Malicious URLs; Anti-Phishing; Phishing detection;
D O I
10.1007/978-981-15-1097-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of information security, phishing URLs detection and prevention has recently become egregious. For detecting, phishing attacks several anti-phishing systems have already been proposed by researchers. The performance of those systems can be affected due to the lack of proper selection of machine learning classifiers along with the types of feature sets. A details investigation on machine learning classifiers (KNN, DT, SVM, RF, ERT and GBT) along with three publicly available datasets with multidimensional feature sets have been presented on this paper. The performance of the classifiers has been evaluated by confusion matrix, precision, recall, F1-score, accuracy and misclassification rate. The best output obtained from Random Forest and Extremely Randomized Tree with dataset one and three (binary class feature set) of 97% and 98% accuracy accordingly. In multiclass feature set (dataset two), Gradient Boosting Tree provides highest performance with 92% accuracy.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 50 条
  • [21] A hybrid DNN-LSTM model for detecting phishing URLs
    Ozcan, Alper
    Catal, Cagatay
    Donmez, Emrah
    Senturk, Behcet
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (07): : 4957 - 4973
  • [22] URL Phishing Detection using Machine Learning Techniques based on URLs Lexical Analysis
    Abutaha, Mohammed
    Ababneh, Mohammad
    Mahmoud, Khaled
    Baddar, Sherenaz Al-Haj
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 147 - 152
  • [23] Phishing Website Detection from URLs Using Classical Machine Learning ANN Model
    Salloum, Said
    Gaber, Tarek
    Vadera, Sunil
    Shaalan, Khaled
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2021, PT II, 2021, 399 : 509 - 523
  • [24] Detecting Spear Phishing Attacks Using Machine Learning
    Regulagadda, Ramakrishna
    Krishna, M. Sai
    Prasanth, G.
    Sumalatha, V
    Ramesh, Y. Sai
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 1457 - 1459
  • [25] Detecting phishing websites using machine learning technique
    Dutta, Ashit Kumar
    PLOS ONE, 2021, 16 (10):
  • [26] PhishMon: A Machine Learning Framework for Detecting Phishing Webpages
    Niakanlahiji, Amirreza
    Chu, Bei-Tseng
    Al-Shaer, Ehab
    2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2018, : 220 - 225
  • [27] Detecting Ambiguous Phishing Certificates using Machine Learning
    Homayoun, Sajad
    Hageman, Kaspar
    Afzal-Houshmand, Sam
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 1 - 6
  • [28] Detecting Turkish Phishing Attack with Machine Learning Algorithm
    Turhanlar, Melih
    Acarturk, Cengiz
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES (WEBIST), 2021, : 577 - 584
  • [29] Machine Learning Techniques for Detecting Phishing URL Attacks
    Mosa, Diana T.
    Shams, Mahmoud Y.
    Abohany, Amr A.
    El-kenawy, El-Sayed M.
    Thabet, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 1271 - 1290
  • [30] Detecting Malicious URLs Based on Machine Learning Algorithms and Word Embeddings
    Crisan, Andrei
    Florea, Gabriel
    Halasz, Lorand
    Lemnaru, Camelia
    Oprisa, Ciprian
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2020), 2020, : 187 - 193