Segmentation, Ordering and Multi-Object Tracking using Graphical Models

被引:0
|
作者
Wang, Chaohui [1 ]
de La Gorce, Martin [1 ]
Paragios, Nikos [2 ]
机构
[1] Ecole Cent Paris, Lab MAS, Paris, France
[2] Ecole Cent Paris Equipe GALEN, INRIA Saclay Ile de France, Lab MAS, Palaiseau, France
关键词
MRFS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a unified graphical-model framework to interpret a scene composed of multiple objects in monocular video sequences. Using a single pairwise Markov random field (MRF), all the observed and hidden variables of interest such as image intensities, pixels' states (associated object's index and relative depth), objects' states (model motion parameters and relative depth) are jointly considered. Particular attention is given to occlusion handling by introducing a rigorous visibility modeling within the MRF formulation. Through minimizing the MRF's energy, we simultaneously segment, track and sort by depth the objects. Promising experimental results demonstrate the potential of this framework and its robustness to image noise, cluttered background, moving camera and background, and even complete occlusions.
引用
收藏
页码:747 / 754
页数:8
相关论文
共 50 条
  • [21] MULTI-OBJECT TRACKING USING BINARY MASKS
    Huttunen, Sami
    Heikkila, Janne
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2640 - 2643
  • [22] Multi-object segmentation framework using deformable models for medical imaging analysis
    Rafael Namías
    Juan Pablo D’Amato
    Mariana del Fresno
    Marcelo Vénere
    Nicola Pirró
    Marc-Emmanuel Bellemare
    Medical & Biological Engineering & Computing, 2016, 54 : 1181 - 1192
  • [23] Multi-Object Sketch Segmentation Using Convolutional Object Detectors
    Moetesum, Momina
    Zeeshan, Osama
    Siddiqi, Imran
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [24] Multi-object segmentation framework using deformable models for medical imaging analysis
    Namias, Rafael
    Pablo D'Amato, Juan
    del Fresno, Mariana
    Venere, Marcelo
    Pirro, Nicola
    Bellemare, Marc-Emmanuel
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (08) : 1181 - 1192
  • [25] Multi-object trajectory tracking
    Han, Mei
    Xu, Wei
    Tao, Hai
    Gong, Yihong
    MACHINE VISION AND APPLICATIONS, 2007, 18 (3-4) : 221 - 232
  • [26] Multi-object tracking in video
    Agbinya, JI
    Rees, D
    REAL-TIME IMAGING, 1999, 5 (05) : 295 - 304
  • [27] Referring Multi-Object Tracking
    Wu, Dongming
    Han, Wencheng
    Wang, Tiancai
    Dong, Xingping
    Zhang, Xiangyu
    Shen, Jianbing
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14633 - 14642
  • [28] Multi-Object Tracking in the Dark
    Wang, Xinzhe
    Ma, Kang
    Liu, Qiankun
    Zou, Yunhao
    Fu, Ying
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 382 - 392
  • [29] Multi-Object Tracking and Segmentation with a Space-Time Memory Network
    Miah, Mehdi
    Bilodeau, Guillaume-Alexandre
    Saunier, Nicolas
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 184 - 193
  • [30] Entangled appearance and motion structures network for multi-object tracking and segmentation
    Aryanfar, Ehsan
    Shoorehdeli, Mahdi Aliyari
    Seydi, Vahid
    MACHINE VISION AND APPLICATIONS, 2025, 36 (01)