Segmentation, Ordering and Multi-Object Tracking using Graphical Models

被引:0
|
作者
Wang, Chaohui [1 ]
de La Gorce, Martin [1 ]
Paragios, Nikos [2 ]
机构
[1] Ecole Cent Paris, Lab MAS, Paris, France
[2] Ecole Cent Paris Equipe GALEN, INRIA Saclay Ile de France, Lab MAS, Palaiseau, France
关键词
MRFS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a unified graphical-model framework to interpret a scene composed of multiple objects in monocular video sequences. Using a single pairwise Markov random field (MRF), all the observed and hidden variables of interest such as image intensities, pixels' states (associated object's index and relative depth), objects' states (model motion parameters and relative depth) are jointly considered. Particular attention is given to occlusion handling by introducing a rigorous visibility modeling within the MRF formulation. Through minimizing the MRF's energy, we simultaneously segment, track and sort by depth the objects. Promising experimental results demonstrate the potential of this framework and its robustness to image noise, cluttered background, moving camera and background, and even complete occlusions.
引用
收藏
页码:747 / 754
页数:8
相关论文
共 50 条
  • [1] MOTS: Multi-Object Tracking and Segmentation
    Voigtlaender, Paul
    Krause, Michael
    Osep, Aljosa
    Luiten, Jonathon
    Sekar, Berin Balachandar Gnana
    Geiger, Andreas
    Leibe, Bastian
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7934 - 7943
  • [2] Weakly Supervised Multi-Object Tracking and Segmentation
    Ruiz, Idoia
    Porzi, Lorenzo
    Bulo, Samuel Rota
    Kontschieder, Peter
    Serrat, Joan
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 125 - 133
  • [3] Multi-Object Segmentation using Coupled Shape Space Models
    Schwarz, Tobias
    Heimann, Tobias
    Lossnitzer, Dirk
    Mohrhardt, Carsten
    Steen, Henning
    Rietdorf, Urte
    Wolf, Ivo
    Meinzer, Hans-Peter
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [4] Coupling deformable models for multi-object segmentation
    Kainmueller, Dagmar
    Lamecker, Hans
    Zachow, Stefan
    Hege, Hans-Christian
    BIOMEDICAL SIMULATION, PROCEEDINGS, 2008, 5104 : 69 - 78
  • [5] A Framework to Combine Multi-Object Video Segmentation and Tracking
    Nadeem, Sehr
    Rahman, Anis
    Butt, Asad A.
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 525 - 531
  • [6] Leveraging Weak Segmentation for Multi-object Tracking System
    Wang, JiaXin
    Ma, CuiXia
    Wang, Hao
    Wang, HongAn
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 63 - 68
  • [7] Multi-Object Tracking Based on Segmentation and Collision Avoidance
    Meng Zhao
    Junhui Wang
    Maoyong Cao
    Peirui Bai
    Hongyan Gu
    Mingtao Pei
    Journal of Beijing Institute of Technology, 2018, 27 (02) : 213 - 219
  • [8] Multi-Object Tracking, Segmentation and Validation in Thermal Images
    Muresan, Mircea Paul
    Danescu, Radu
    Nedevschi, Sergiu
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [9] An Object Point Set Inductive Tracker for Multi-Object Tracking and Segmentation
    Gao, Yan
    Xu, Haojun
    Zheng, Yu
    Li, Jie
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6083 - 6096
  • [10] Learning Multi-Object Tracking and Segmentation from Automatic Annotations
    Porzi, Lorenzo
    Hofinger, Markus
    Ruiz, Idoia
    Serrat, Joan
    Bulo, Samuel Rota
    Kontschieder, Peter
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6845 - 6854