Projection Methods for Dynamical Low-Rank Approximation of High-Dimensional Problems

被引:23
|
作者
Kieri, Emil [1 ,2 ]
Vandereycken, Bart [3 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, Bonn, Germany
[2] Univ Bonn, Inst Numer Simulat, Bonn, Germany
[3] Univ Geneva, Sect Math, Geneva, Switzerland
关键词
Tensor Train; Low-Rank Approximation; Tensor Differential Equations; Projection Methods; LINEAR-SYSTEMS; OPTIMIZATION; TUCKER;
D O I
10.1515/cmam-2018-0029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider dynamical low-rank approximation on the manifold of fixed-rank matrices and tensor trains (also called matrix product states), and analyse projection methods for the time integration of such problems. First, under suitable approximability assumptions, we prove error estimates for the explicit Euler method equipped with quasi-optimal projections to the manifold. Then we discuss the possibilities and difficulties with higher-order explicit methods. In particular, we discuss ways for limiting rank growth in the increments, and robustness with respect to small singular values.
引用
收藏
页码:73 / 92
页数:20
相关论文
共 50 条
  • [21] An unconventional robust integrator for dynamical low-rank approximation
    Gianluca Ceruti
    Christian Lubich
    BIT Numerical Mathematics, 2022, 62 : 23 - 44
  • [22] Dynamical low-rank approximation: applications and numerical experiments
    Nonnenmacher, Achim
    Lubich, Christian
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1346 - 1357
  • [23] DYNAMICAL LOW-RANK APPROXIMATION FOR BURGERS' EQUATION WITH UNCERTAINTY
    Kusch, Jonas
    Ceruti, Gianluca
    Einkemmer, Lukas
    Frank, Martin
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (05) : 1 - 21
  • [24] An unconventional robust integrator for dynamical low-rank approximation
    Ceruti, Gianluca
    Lubich, Christian
    BIT NUMERICAL MATHEMATICS, 2022, 62 (01) : 23 - 44
  • [25] DYNAMICAL LOW-RANK APPROXIMATION FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Kazashi, Yoshihito
    Nobile, Fabio
    Zoccolan, Fabio
    MATHEMATICS OF COMPUTATION, 2025, 94 (353) : 1335 - 1375
  • [26] LOW-RANK APPROXIMATION TO HETEROGENEOUS ELLIPTIC PROBLEMS
    Li, Guanglian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (01): : 477 - 502
  • [27] A PARALLEL RANK-ADAPTIVE INTEGRATOR FOR DYNAMICAL LOW-RANK APPROXIMATION
    Cerutit, Gianluca
    Kusch, Jonas
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : B205 - B228
  • [28] A rank-adaptive robust integrator for dynamical low-rank approximation
    Gianluca Ceruti
    Jonas Kusch
    Christian Lubich
    BIT Numerical Mathematics, 2022, 62 : 1149 - 1174
  • [29] A rank-adaptive robust integrator for dynamical low-rank approximation
    Ceruti, Gianluca
    Kusch, Jonas
    Lubich, Christian
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1149 - 1174
  • [30] High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes
    Salinas, David
    Bohlke-Schneider, Michael
    Callot, Laurent
    Medico, Roberto
    Gasthaus, Jan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32