Mortality Prediction using Machine Learning Techniques: Comparative Analysis

被引:0
|
作者
Verma, Akash [1 ]
Goyal, Shreya [2 ]
Thakur, Shridhar Kumar [3 ]
Gupta, Archit [4 ]
Gupta, Indrajeet [5 ]
机构
[1] Bhilai Inst Technol, Dept CSE, Durg, India
[2] Natl Inst Technol, Dept CSE, Jalandhar, Punjab, India
[3] Galgotias Univ, Dept Comp Sci, Greater Noida, India
[4] ABES Engn Coll, Dept Comp Sci, Ghaziabad, India
[5] Bennett Univ, Dept CSE, Greater Noida, India
关键词
Machine Learning Algorithm; Feature Scaling; Feature Extraction; Neural Networks; Logistics Regression; Support Vector Machine; HOSPITAL MORTALITY;
D O I
10.1109/iacc48062.2019.8971566
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In recent past, data mining, artificial intelligence, and machine learning have gained enormous attention to improve hospital performance. In some hospitals, medical personals want to improve their statists by decreasing the number of patients dying in the hospital. The research is focused on the mortality prediction of measurable outcomes, including the risk of complications & length of hospital stay. The duration spent in the hospital of the patient plays an important role both for patients & healthcare providers, influenced by numerous factors. LOS (length of stay) in critical care has great importance, both to the patient experience as well as the cost of care and is influenced by the complex environmental factors of the Hospitals. LOS is a parameter that is used to identify the extremity of illness & health-related resource utilization. This paper provides the improved prediction rate that a patient survives or dies in the range of length of stay in the hospital. It also anchors the analytical methods for the length of stay and mortality prediction.
引用
收藏
页码:230 / 234
页数:5
相关论文
共 50 条
  • [31] House price prediction modeling using machine learning techniques: a comparative study
    Yagmur, Ayten
    Kayakus, Mehmet
    Terzioglu, Mustafa
    AESTIMUM, 2022, 81 : 39 - 51
  • [32] A comparative study of machine learning techniques for the improved prediction of NSCLC survival analysis
    Vial, Alanna
    Stirling, David
    Field, Matthew
    Ros, Montserrat
    Ritz, Christian
    Carolan, Martin
    Holloway, Lois
    Miller, Alexis A.
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [33] Implanted Knee Kinematics Prediction: comparative performance analysis of machine learning techniques
    Hossain, Belayat
    Morooka, Takatoshi
    Okuno, Makiko
    Nii, Manabu
    Yoshiya, Shinichi
    Kobashi, Syoji
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 544 - 549
  • [34] A Comparative Analysis of Machine Learning Classifiers and Ensemble Techniques in Financial Distress Prediction
    Sreedharan, Meenu
    Khedr, Ahmed M.
    El Bannany, Magdi
    PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 653 - 657
  • [35] Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models
    Kumar, Vijendra
    Kedam, Naresh
    Sharma, Kul Vaibhav
    Mehta, Darshan J.
    Caloiero, Tommaso
    WATER, 2023, 15 (14)
  • [36] Prediction of Childbirth Mortality Using Machine Learning
    Metsker, Oleg
    Kopanitsa, Georgy
    Bolgova, Ekaterina
    PHEALTH 2020: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEARABLE MICRO AND NANO TECHNOLOGIES FOR PERSONALIZED HEALTH, 2020, 273 : 109 - 114
  • [37] Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques
    Akter, Tanzina
    Hossain, Md. Farhad
    Ullah, Mohammad Safi
    Akter, Rabeya
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2024, 2024
  • [38] Advancing Mortality Prediction in Ecuador Through Machine Learning Techniques
    Jimenez-Torres, Adriana
    Roa, Henry N.
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, INTELLISYS 2024, 2024, 1065 : 258 - 278
  • [39] Parametric Analysis of Heart Attack Prediction Using Machine Learning Techniques
    Ranga, Virender
    Rohila, D.
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (04): : 37 - 48
  • [40] Prediction of hypercholesterolemia using machine learning techniques
    Pooyan Moradifar
    Mohammad Meskarpour Amiri
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 255 - 265