Static mechanical properties and mechanism of C200 ultra-high performance concrete (UHPC) containing coarse aggregates

被引:41
|
作者
Lv Yujing [1 ]
Zhang Wenhua [1 ]
Wu Fan [1 ]
Wu Peipei [1 ]
Zeng Weizhao [1 ]
Yang Fenghao [1 ]
机构
[1] Nanjing Forestry Univ, Dept Civil Engn, Nanjing 210037, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
C200; concrete; UHPC; coarse aggregate; mechanical properties; ITZ; REACTIVE POWDER CONCRETE; FLY-ASH; COMPRESSIVE STRENGTH; FRACTURE-BEHAVIOR; HARDENING PROCESS; SILICA FUME; CEMENT; DURABILITY; SIZE;
D O I
10.1515/secm-2020-0018
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this paper, C200 ultra-high performance concrete (UHPC) containing coarse aggregate was prepared. Firstly, four different maximum size and three different type of coarse aggregate having significant differences in strength, surface texture, porosity and absorption were used to prepared the mixtures. Secondly, the effect of maximum size and type of coarse aggregate on the workability of the fresh UHPC and the mechanical behaviour of harden UHPC were investigated. Finally, a series micro-tests including mercury intrusion porosimetry (MIP), scanning electron microscope (SEM), X-ray diffraction (XRD) were conducted and the mechanism of the C200 UHPC were discussed. The results show that the type and maximum size of coarse aggregate have significant effect on the workability and mechanical properties of C200 UHPC. The basalt coarse aggregate with maximum size of 10mm can be used to prepare the C200 UHPC. The compressive strength and flexural strength of the C200 UHPC is 203MPa and 46MPa at 90 day, respectively. Besides, the micro-tests data show that the C200 UHPC has a compacted matrix and strong interface transition zone (ITZ), which make the aggregate potential strength fully used.
引用
收藏
页码:186 / 195
页数:10
相关论文
共 50 条
  • [31] OPTIMIZATION OF PACKING OF LOCAL COARSE AGGREGATES FOR USE IN UHPC (ULTRA-HIGH-PERFORMANCE CONCRETE)
    Zayickis, Juris
    Lukasenoks, Arturs
    Macanovskis, Arturs
    Tupesis, Maris
    19TH INTERNATIONAL SCIENTIFIC CONFERENCE ENGINEERING FOR RURAL DEVELOPMENT, 2020, : 1718 - 1724
  • [32] Influence of alccofine incorporation on the mechanical behavior of ultra-high performance concrete (UHPC)
    Reddy, G. Gautham Kishore
    Ramadoss, P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 789 - 797
  • [33] Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
    丁庆军
    ZHOU Changsheng
    张高展
    GUO Hong
    LI Yang
    ZHANG Yongyuan
    GUO Kaizheng
    Journal of Wuhan University of Technology(Materials Science), 2024, 39 (03) : 673 - 681
  • [34] Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
    Ding, Qingjun
    Zhou, Changsheng
    Zhang, Gaozhan
    Guo, Hong
    Li, Yang
    Zhang, Yongyuan
    Guo, Kaizheng
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2024, 39 (03): : 673 - 681
  • [35] Development of an environmental Ultra-High Performance Concrete (UHPC) incorporating carbonated recycled coarse aggregate
    Leng, Yong
    Rui, Yu
    Zhonghe, Shui
    Dingqiang, Fan
    Jinnan, Wang
    Yonghuan, Yu
    Qiqing, Luo
    Xiang, Hong
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 362
  • [36] Effects of Eco-friendly Fine Aggregates on Mechanical Properties of Ultra-high Performance Concrete
    Chu H.
    Jiang J.
    Li H.
    Xia G.
    Chu, Hongyan (chuhongyan@njfu.edu.cn), 1600, Cailiao Daobaoshe/ Materials Review (34): : 24029 - 24033
  • [37] Microplastics as lightweight aggregates for ultra-high performance concrete: Mechanical properties and autoignition at elevated temperatures
    Ahn, Jaesung
    Moon, Juhyuk
    Pae, Junil
    Kim, Hyeong-Ki
    COMPOSITE STRUCTURES, 2023, 321
  • [38] High-performance concrete: Influence of coarse aggregates on mechanical properties
    Cetin, A
    Carrasquillo, RL
    ACI MATERIALS JOURNAL, 1998, 95 (03) : 252 - 261
  • [39] Rheological and Mechanical Properties of Ultra-High-Performance Concrete Containing Fine Recycled Concrete Aggregates
    Yu, Lanzhen
    Huang, Lili
    Ding, Hui
    MATERIALS, 2019, 12 (22)
  • [40] The mechanism of curing regimes on the macroscopic properties and microstructure of ultra-high performance concrete with lightweight aggregates
    Guo, Kai-zheng
    Zhang, Gao-zhan
    Li, Yang
    Yang, Jun
    Ding, Qing-jun
    JOURNAL OF BUILDING ENGINEERING, 2024, 82