On the Evaluation of Sequential Machine Learning for Network Intrusion Detection

被引:11
|
作者
Corsini, Andrea [1 ]
Yang, Shanchieh Jay [2 ]
Apruzzese, Giovanni [3 ]
机构
[1] Univ Modena & Reggio Emilia, Modena, Italy
[2] Rochester Inst Technol, Rochester, NY 14623 USA
[3] Univ Liechtenstein, Vaduz, Liechtenstein
关键词
Long Short Term Memory; Machine Learning; Network Intrusion Detection; Cybersecurity; Network Flows; Deep Learning; BOTNET;
D O I
10.1145/3465481.3470065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances in deep learning renewed the research interests in machine learning for Network Intrusion Detection Systems (NIDS). Specifically, attention has been given to sequential learning models, due to their ability to extract the temporal characteristics of network traffic flows (NetFlows), and use them for NIDS tasks. However, the applications of these sequential models often consist of transferring and adapting methodologies directly from other fields, without an in-depth investigation on how to leverage the specific circumstances of cybersecurity scenarios; moreover, there is a lack of comprehensive studies on sequential models that rely on NetFlow data, which presents significant advantages over traditional full packet captures. We tackle this problem in this paper. We propose a detailed methodology to extract temporal sequences of NetFlows that denote patterns of malicious activities. Then, we apply this methodology to compare the efficacy of sequential learning models against traditional static learning models. In particular, we perform a fair comparison of a 'sequential' Long Short-Term Memory (LSTM) against a 'static' Feedforward Neural Networks (FNN) in distinct environments represented by two well-known datasets for NIDS: the CICIDS2017 and the CTU13. Our results highlight that LSTM achieves comparable performance to FNN in the CICIDS2017 with over 99.5% F1-score; while obtaining superior performance in the CTU13, with 95.7% F1-score against 91.5%. This paper thus paves the way to future applications of sequential learning models for NIDS.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Research on Network Intrusion Detection Technology Based on Machine Learning
    Fei Wu
    Ting Li
    Zhen Wu
    ShuLin Wu
    ChuanQi Xiao
    International Journal of Wireless Information Networks, 2021, 28 : 262 - 275
  • [32] Enhancing Network Security: Leveraging Machine Learning for Intrusion Detection
    Rao, M. Veera V. Rama
    Rapaka, Anuj
    Prasad, M.
    Rao, P. B. V. Raja
    Satyanarayanamurty, P.
    Pokkuluri, Kiran Sree
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 1555 - 1562
  • [33] Network Intrusion Detection Leveraging Machine Learning and Feature Selection
    Ali, Arshid
    Shaukat, Shahtaj
    Tayyab, Muhammad
    Khan, Muazzam A.
    Khan, Jan Sher
    Arshad
    Ahmad, Jawad
    2020 IEEE 17TH INTERNATIONAL CONFERENCE ON SMART COMMUNITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEEHONET 2020), 2020, : 49 - 53
  • [34] Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
    Zeng, Zengri
    Peng, Wei
    Zhao, Baokang
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [35] A Network Intrusion Detection System Using Ensemble Machine Learning
    Kiflay, Aklil Zenebe
    Tsokanos, Athanasios
    Kirner, Raimund
    2021 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2021,
  • [36] Review on Network Intrusion Detection Techniques using Machine Learning
    Shashank, K.
    Balachandra, Mamatha
    PROCEEDINGS OF 2018 IEEE DISTRIBUTED COMPUTING, VLSI, ELECTRICAL CIRCUITS AND ROBOTICS (DISCOVER), 2018, : 104 - 109
  • [37] A Sequential Approach to Network Intrusion Detection
    Lee, Nicholas
    Ooi, Shih Yin
    Pang, Ying Han
    COMPUTATIONAL SCIENCE AND TECHNOLOGY (ICCST 2019), 2020, 603 : 11 - 21
  • [38] Evaluation of Tree-Based Machine Learning Algorithms for Network Intrusion Detection in the Internet of Things
    Essa, Mohamed Saied
    Guirguis, Shawkat Kamal
    IT PROFESSIONAL, 2023, 25 (05) : 45 - 56
  • [39] Towards a Reliable Comparison and Evaluation of Network Intrusion Detection Systems Based on Machine Learning Approaches
    Magan-Carrion, Roberto
    Urda, Daniel
    Diaz-Cano, Ignacio
    Dorronsoro, Bernabe
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [40] Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset
    Chua, Tuan-Hong
    Salam, Iftekhar
    SYMMETRY-BASEL, 2023, 15 (06):