Magnetic resonance imaging of velocity fields, the void fraction and gas dynamics in a cavitating liquid

被引:14
|
作者
Mastikhin, Igor V. [1 ]
Arbabi, Aidin [1 ]
Newling, Benedict [1 ]
Hamza, Abdelhaq [1 ]
Adair, Alexander [1 ]
机构
[1] Univ New Brunswick, Dept Phys, UNB MRI Ctr, Fredericton, NB E3B 5A3, Canada
关键词
POROUS-MEDIA; RECTIFIED DIFFUSION; BUBBLES; PRESSURE; SONOLUMINESCENCE; MICROBUBBLES; FREQUENCIES; SINGLE; SIZE;
D O I
10.1007/s00348-011-1209-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In acoustic cavitation, the relationship between the bubble dynamics on the microscale and the flow properties on the macroscale is critical in determining sonochemical reaction kinetics. A new technique was developed to measure the void fraction and estimate water mobility in the vicinity of cavitating bubbles using phase-encoded magnetic resonance imaging with short characteristic measurement timescales (0.1-1 ms). The exponential behavior of the NMR signal decay indicated the fast diffusion regime, with the relationship between local mechanical dispersion D-mix and the average bubble radius R, D-mix >> 2R(2)/10(-4)S, resulting in dispersion of orders of magnitude greater than diffusion in quiescent water. For two different samples (water and a surfactant solution), the independent measurements of three-dimensional void fraction and velocity fields permitted the calculation of compressibility, divergence and vorticity of the cavitating medium. The measured dynamics of the dissolved gas, compared with that of the surrounding liquid, reflected the difference in the bubble coalescence and lifetimes and correlated with the macroscopic flow parameters.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 50 条
  • [21] EASY WAY TO DETERMINE VOID FRACTION IN GAS-LIQUID FLOW
    El-Halwagi, MM
    EISSA, S
    CHEMICAL ENGINEERING, 1969, 76 (27) : 158 - +
  • [22] DYNAMICS OF THE INTERPLANETARY GAS AND MAGNETIC FIELDS
    PARKER, EN
    ASTROPHYSICAL JOURNAL, 1958, 128 (03): : 664 - 676
  • [23] Insights into gas-liquid-solid reactors obtained by magnetic resonance imaging
    Gladden, L. F.
    Anadon, L. D.
    Dunckley, C. P.
    Mantle, M. D.
    Sederman, A. J.
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (24) : 6969 - 6977
  • [24] Spatial distribution of void fraction in the liquid slug in vertical Gas-Liquid slug flow
    Maldonado, Paul A. D.
    Rodrigues, Carolina C.
    Mancilla, Ernesto
    dos Santos, Eduardo N.
    da Fonseca Junior, Roberto
    Marcelino Neto, Moises A.
    da Silva, Marco J.
    Morales, Rigoberto E. M.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2024, 151
  • [25] Void fraction in vertical gas-liquid slug flow:: Influence of liquid slug content
    Guet, S.
    Decarre, S.
    Henriot, V.
    Line, A.
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (22) : 7336 - 7350
  • [26] A METHOD OF VOID FRACTION CALCULATION FOR VAPOR-LIQUID OR GAS-LIQUID FLOW CONDITIONS
    BUDRIK, VV
    YELISEEV, AB
    TONCHAK, IN
    FIZIKA NIZKIKH TEMPERATUR, 1990, 16 (04): : 428 - 432
  • [27] Distribution of void fraction for gas-liquid slug flow in aninclined pipe
    XIA Guo-Dong1
    2 State Key Laboratory of Multiphase Flow in Power Engineering
    NuclearScienceandTechniques, 2001, (02) : 143 - 148
  • [28] Exercise Magnetic Resonance Imaging Is a Gas
    Rogers, Toby
    Lederman, Robert J.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2016, 9 (12)
  • [29] Vertically downward gas-liquid flow: Void fraction and pressure drop
    Bouyahiaoui, Hiba
    Saidj, Faiza
    Arabi, Abderraouf
    Al-Sarkhi, Abdelsalam
    Azzi, Abdelwahid
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 172
  • [30] Gas-liquid phase distribution and void fraction measurements using MRI
    Daidzic, NE
    Schmidt, E
    Hasan, MM
    Altobelli, S
    NUCLEAR ENGINEERING AND DESIGN, 2005, 235 (10-12) : 1163 - 1178