Optical properties of graphene plasmons and their potential applications

被引:22
|
作者
Yang Xiao-Xia [1 ]
Kong Xiang-Tian [1 ]
Dai Qing [1 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene plasmon; electromagnetic field enhancement; electro-optical modulation; HYBRIDIZATION; PHOTONICS;
D O I
10.7498/aps.64.106801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graphene plasmons have aroused a great deal of research interest in recent years due to their unique features such as electrical tunability, ultra-strong field confinement and relatively low intrinsic damping. In this review paper, we summarize the fundamental optical properties of localized and propagating plasmons supported by graphene, and the experimental techniques for excitation and detection of them, with focusing on their dispersion relations and plasmon-phonon coupling mechanism. In general, the dispersion of graphene plasmons is affected by the Fermi level of graphene and the dielectric environment. The graphene plasmons can exist in a broad spectrum range from mid-infrared to terahertz. This has been experimentally verified for both the localized and propagation plasmons in graphene. On the one hand, the excitation frequency and confinement of localized plasmons supported by graphene micro/nano-structures are constrained by the structural geometry. Additionally, influenced from the tunability of the optical conductivity of graphene, the excitation frequency of graphene plasmons can be tuned by electrostatic or chemical doping. On the other hand, propagating plasmons have been launched and detected by using scattering-type scanning near-field optical microscopy. This technique provides the real-space imaging of the electromagnetic fields of plasmons, thereby directly confirming the existence of the graphene plasmons and verifying their properties predicted theoretically. In a similar regime, the launching and controlling of the propagating plasmons have also been demonstrated by using resonant metal antennas. Compared to metal plasmons, graphene plasmons are much more easily affected by the surroundings due to their scattering from impurity charges and coupling with substrate phonons. In particular, graphene plasmons can hybridize strongly with substrate phonons and there are a series of effects on plasmon properties such as resonance frequency, intensity and plasmon lifetime. The designing of the dielectric surrounding can effectively manipulate the graphene plasmons. Finally, we review the emerging applications of graphene plasmon in the mid-infrared and terahertz, such as electro-optical modulators and enhanced mid-infrared spectroscopy.
引用
收藏
页数:10
相关论文
共 56 条
  • [1] Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
    Adato, Ronen
    Yanik, Ahmet A.
    Amsden, Jason J.
    Kaplan, David L.
    Omenetto, Fiorenzo G.
    Hong, Mi K.
    Erramilli, Shyamsunder
    Altug, Hatice
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) : 19227 - 19232
  • [2] Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns
    Alonso-Gonzalez, P.
    Nikitin, A. Y.
    Golmar, F.
    Centeno, A.
    Pesquera, A.
    Velez, S.
    Chen, J.
    Navickaite, G.
    Koppens, F.
    Zurutuza, A.
    Casanova, F.
    Hueso, L. E.
    Hillenbrand, R.
    [J]. SCIENCE, 2014, 344 (6190) : 1369 - 1373
  • [3] Plasmons in graphene on uniaxial substrates
    Arrazola, I.
    Hillenbrand, R.
    Nikitin, A. Yu.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (01)
  • [4] Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices
    Bao, Qiaoliang
    Loh, Kian Ping
    [J]. ACS NANO, 2012, 6 (05) : 3677 - 3694
  • [5] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830
  • [6] Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures
    Brar, Victor W.
    Jang, Min Seok
    Sherrott, Michelle
    Kim, Seyoon
    Lopez, Josue J.
    Kim, Laura B.
    Choi, Mansoo
    Atwater, Harry
    [J]. NANO LETTERS, 2014, 14 (07) : 3876 - 3880
  • [7] Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators
    Brar, Victor W.
    Jang, Min Seok
    Sherrott, Michelle
    Lopez, Josue J.
    Atwater, Harry A.
    [J]. NANO LETTERS, 2013, 13 (06) : 2541 - 2547
  • [8] Optical nano-imaging of gate-tunable graphene plasmons
    Chen, Jianing
    Badioli, Michela
    Alonso-Gonzalez, Pablo
    Thongrattanasiri, Sukosin
    Huth, Florian
    Osmond, Johann
    Spasenovic, Marko
    Centeno, Alba
    Pesquera, Amaia
    Godignon, Philippe
    Zurutuza Elorza, Amaia
    Camara, Nicolas
    Javier Garcia de Abajo, F.
    Hillenbrand, Rainer
    Koppens, Frank H. L.
    [J]. NATURE, 2012, 487 (7405) : 77 - 81
  • [9] Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate
    Chen, Lin
    Zhang, Tian
    Li, Xun
    Wang, Guoping
    [J]. OPTICS EXPRESS, 2013, 21 (23): : 28628 - 28637
  • [10] Atomically Thin Surface Cloak Using Graphene Monolayers
    Chen, Pai-Yen
    Alu, Andrea
    [J]. ACS NANO, 2011, 5 (07) : 5855 - 5863