Segmentation of vessels in angiograms using convolutional neural networks

被引:61
|
作者
Nasr-Esfahani, E. [1 ]
Karimi, N. [1 ]
Jafari, M. H. [1 ]
Soroushmehr, S. M. R. [2 ,3 ]
Samavi, S. [1 ,2 ,3 ]
Nallamothu, B. K. [3 ]
Najarian, K. [2 ,3 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
关键词
Angiograms; Vessel segmentation; Deep learning; Convolutional neural networks; TOP-HAT TRANSFORM; CLASSIFICATION;
D O I
10.1016/j.bspc.2017.09.012
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Coronary artery disease (CAD) is the most common type of heart disease and it is the leading cause of death in most parts of the world. About fifty percent of all middle-aged men and thirty percent of all middle-aged women in North America develop some type of CAD. The main tool for diagnosis of CAD is the X-ray angiography. Usually these images lack high quality and they contain noise. Accurate segmentation of vessels in these images could help physicians in accurate CAD diagnosis. Many image processing techniques have been used by researchers for vessel segmentation but achieving high accuracy is still a challenge in this regard. In this paper a method for detecting vessel regions in angiography images is proposed which is based on deep learning approach using convolutional neural networks (CNN). The intended angiogram is first processed to enhance the image quality. Then a patch around each pixel is fed into a trained CNN to determine whether the pixel is of vessel or background regions. Different elements of the proposed method, including the image enhancement method, the architecture of the CNN, and the training procedure of the CNN, all lead to a highly accurate mechanism. Experiments performed on angiograms of a dataset show that the proposed algorithm has a Dice score of 81.51 and an accuracy of 97.93. Results of the proposed algorithm show its superiority in extraction of vessel regions in comparison to state of the art methods. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:240 / 251
页数:12
相关论文
共 50 条
  • [41] Fast and robust segmentation of the striatum using deep convolutional neural networks
    Choi, Hongyoon
    Jin, Kyong Hwan
    JOURNAL OF NEUROSCIENCE METHODS, 2016, 274 : 146 - 153
  • [42] Multiple Sclerosis Lesion Segmentation using Improved Convolutional Neural Networks
    Kazancli, Erol
    Prchkovska, Vesna
    Rodrigues, Paulo
    Villoslada, Pablo
    Igual, Laura
    VISAPP: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL 4: VISAPP, 2018, : 260 - 269
  • [43] Automatic Airway Segmentation in Chest CT Using Convolutional Neural Networks
    Juarez, A. Garcia-Uceda
    Tiddens, H. A. W. M.
    de Bruijne, M.
    IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 : 238 - 250
  • [44] Segmentation of Thermal Breast Images Using Convolutional and Deconvolutional Neural Networks
    Guan, Shuyue
    Kamona, Nada
    Loew, Murray
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [45] Brain Tumor Segmentation Using Deep Fully Convolutional Neural Networks
    Kim, Geena
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 344 - 357
  • [46] VOLUME SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORKS WITH LIMITED TRAINING DATA
    Cheng, Hsueh-Chien
    Varshney, Amitabh
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 590 - 594
  • [47] Tongue Segmentation and Color Classification Using Deep Convolutional Neural Networks
    Yan, Bo
    Zhang, Sheng
    Yang, Zijiang
    Su, Hongyi
    Zheng, Hong
    MATHEMATICS, 2022, 10 (22)
  • [48] Robust Abdominal Organ Segmentation Using Regional Convolutional Neural Networks
    Larsson, Mans
    Zhang, Yuhang
    Kahl, Fredrik
    IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 41 - 52
  • [49] Exudate Segmentation using Fully Convolutional Neural Networks and Inception Modules
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [50] Robust abdominal organ segmentation using regional convolutional neural networks
    Larsson, Mans
    Zhang, Yuhang
    Kahl, Fredrik
    APPLIED SOFT COMPUTING, 2018, 70 : 465 - 471