Breakthrough Conventional Based Approach for Dog Breed Classification Using CNN with Transfer Learning

被引:9
|
作者
Borwarnginn, Punyanuch [1 ]
Thongkanchorn, Kittikhun [1 ]
Kanchanapreechakorn, Sarattha [1 ]
Kusakunniran, Worapan [1 ]
机构
[1] Mahidol Univ, Fac Informat & Commun Technol, Salaya, Nakhon Pathom, Thailand
关键词
dog breed classification; LBP; HOG; transfer learning; deep learning;
D O I
10.1109/iciteed.2019.8929955
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Dogs are one of the most common domestic animals. Due to a large number of dogs, there are several issues such as population control, decrease outbreak such as Rabies, vaccination control, and legal ownership. At present, there are over 180 dog breeds. Each dog breed has specific characteristics and health conditions. In order to provide appropriate treatments and training, it is essential to identify individuals and their breeds. The paper presents the classification methods for dog breed classification using two image processing approaches 1) conventional based approaches by Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) 2) the deep learning based approach by using convolutional neural networks (CNN) with transfer learning. The result shows that our retrained CNN model performs better in classifying a dog breeds. It achieves 96.75% accuracy compared with 79.25% using the HOG descriptor.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Deep Learning based CNN framework approach for Plankton Classification
    Rawat, Sarthak Singh
    Bisht, Abhishek
    Nijhawan, Rahul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 268 - 273
  • [22] Dog Breed Identification Using Deep Learning
    Raduly, Zalan
    Sulyok, Csaba
    Vadaszi, Zsolt
    Zolde, Attila
    2018 IEEE 16TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY 2018), 2018, : 271 - 275
  • [23] Classification and Detection of Rice Diseases Using a 3-Stage CNN Architecture with Transfer Learning Approach
    Gogoi, Munmi
    Kumar, Vikash
    Begum, Shahin Ara
    Sharma, Neelesh
    Kant, Surya
    AGRICULTURE-BASEL, 2023, 13 (08):
  • [24] Towards more efficient CNN-based surgical tools classification using transfer learning
    Jaafar Jaafari
    Samira Douzi
    Khadija Douzi
    Badr Hssina
    Journal of Big Data, 8
  • [25] Comparative analysis of detection and classification of diabetic retinopathy by using transfer learning of CNN based models
    Yadav, Yadavendra
    Chand, Satish
    Sahoo, Ramesh Ch
    Sahoo, Biswa Mohan
    Kumar, Somesh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (01) : 985 - 999
  • [26] Towards more efficient CNN-based surgical tools classification using transfer learning
    Jaafari, Jaafar
    Douzi, Samira
    Douzi, Khadija
    Hssina, Badr
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [27] Hand gesture classification using time-frequency images and transfer learning based on CNN
    Ozdemir, Mehmet Akif
    Kisa, Deniz Hande
    Guren, Onan
    Akan, Aydin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [28] A Transfer Learning-Based Deep CNN Approach for Classification and Diagnosis of Acute Lymphocytic Leukemia Cells
    Magpantay, Leo Dominick C.
    Alon, Helcy D.
    Austria, Yolanda D.
    Melegrito, Mark P.
    Fernando, Glenn John O.
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 280 - 284
  • [29] Bengali Ethnicity Recognition and Gender Classification Using CNN & Transfer Learning
    Jewel, Md
    Hossain, Md Ismail
    Tonni, Tamanna Haider
    PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2019), 2019, : 390 - 396
  • [30] Native Vehicles Classification on Bangladeshi Roads Using CNN with Transfer Learning
    Tabassum, Shaira
    Ullah, Md Sabbir
    Al-nur, Nakib Hossain
    Shatabda, Swakkhar
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 40 - 43