Wavefront sensing and closed-loop control for the Fizeau interferometry testbed

被引:0
|
作者
Lyon, Richard G. [1 ]
Carpenter, Kenneth G. [1 ]
Liu, Alice [1 ]
Petrone, Peter [2 ]
Dogoda, Peter [2 ]
Reed, Daniel [2 ]
Mozurkewich, David [3 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Sigma Space, Lanham, MD 20706 USA
[3] Seabrook Engn, Lanham, MD 20706 USA
关键词
imaging interferometry; wavefront sensing; wavefront control; phase retrieval; phase diversity; active optics; adaptive optics;
D O I
10.1117/12.731761
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Stellar Imager (SI) is a proposed NASA space-based UV imaging interferometer to resolve the stellar disks of nearby stars. SI would consist of 20 - 30 separate spacecraft flying in formation at the Earth-Sun L2 libration point. Onboard wavefront sensing and control is required to maintain alignment during science observations and after array reconfigurations. The Fizeau Interferometry Testbed (FIT), developed at the NASA/Goddard Space Flight Center, is being used to study wavefront sensing and control methodologies for Stellar Imager and other large, sparse aperture telescope systems. FIT initially consists of 7 articulated spherical mirrors in a Golay pattern, and is currently undergoing expansion to 18 elements. FIT currently uses in-focus whitelight sparse aperture PSFs and a direct solve phase retrieval algorithm to sense and control its wavefront. Ultimately it will use extended scene wavelength, with a sequential diversity algorithm that modulates a subset of aperture pistons to jointly estimate the wavefront and the reconstructed image from extended scenes. The recovered wavefront is decomposed into the eigenmodes of the control matrix and actuators are moved to minimize the wavefront piston, tip and tilt in closed-loop. We discuss the testbed, wavefront control methodology and ongoing work to increase its bandwidth from 1 per 11 seconds to a few 10's of Hertz and show ongoing results.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Closed-loop control of depth of anaesthesia
    Webb, A
    Allen, R
    Smith, D
    MEASUREMENT & CONTROL, 1996, 29 (07): : 211 - 215
  • [32] Waterflooding using closed-loop control
    Geir Nævdal
    D. Roald Brouwer
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 37 - 60
  • [33] Closed-loop control of magnetotactic bacteria
    Khalil, Islam S. M.
    Pichel, Marc P.
    Abelmann, Leon
    Misra, Sarthak
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (06): : 637 - 649
  • [34] Closed-loop control of artificial respiration
    Tehrani, FT
    Roum, JH
    WESCON - 96, CONFERENCE PROCEEDINGS, 1996, : 253 - 258
  • [35] CLOSED-LOOP CONTROL OF URBAN TRAFFIC
    RHEE, SY
    YARDENI, A
    MCAULIFFE, R
    OPERATIONS RESEARCH, 1961, 9 : B135 - B135
  • [36] Closed-loop phase-shifting interferometry with a laser diode
    Yoshino, T
    Yamaguchi, H
    OPTICS LETTERS, 1998, 23 (20) : 1576 - 1578
  • [37] Closed-loop control of analgesia in humans
    Gentilini, A
    Morari, M
    Bieniok, C
    Wymann, R
    Schnider, TW
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 861 - 866
  • [38] Multitasked closed-loop control in anesthesia
    Gentilini, A
    Frei, CW
    Glattfedler, AH
    Morari, M
    Sieber, TJ
    Wymann, R
    Schnider, TW
    Zbinden, AM
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (01): : 39 - 53
  • [39] Closed-Loop Stall Control System
    Poggie, Jonathan
    Tilmann, Carl P.
    Flick, Peter M.
    Silkey, Joseph S.
    Osborne, Bradley A.
    Ervin, Gregory
    Maric, Dragan
    JOURNAL OF AIRCRAFT, 2010, 47 (05): : 1747 - 1755
  • [40] METHOD OF CLOSED-LOOP DIGITAL CONTROL
    MONTGOMERIE, GA
    KEELING, GW
    MAY, D
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1969, 116 (08): : 1445 - +