Generalized Zero-Shot Learning using Identifiable Variational Autoencoders

被引:7
|
作者
Gull, Muqaddas [1 ]
Arif, Omar [1 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci, Islamabad 44000, Pakistan
关键词
Zero-shot learning; Generalized zero-shot learning; Non-Linear ICA; Disentangled Representat i o n Learning;
D O I
10.1016/j.eswa.2021.116268
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning tasks rely heavily on a large amount of training data, but collecting and annotating data daily is not practical. Therefore, Zero-shot learning (ZSL) has become important for the applications, where no labeled data is available during training. ZSL aims at recognizing unseen classes by semantic transfer of information from seen to unseen classes. In this paper, we have proposed an identifiable VAE (iVAE) based generative model to address conventional and generalized ZSL. The key to our approach is learning disentangled representations, where each dimension is statistically independent and responsible for generating data. Thus, VAE is a commonly used model for learning disentangled independent factors of variation from the data. Our goal is to learn a latent space representing significant information, that approximates the actual data distribution. Extensive experiments on five benchmark datasets, i.e. CUB, AWA1, AWA2, SUN and aPY, are performed for further evaluation in both settings.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] On Implicit Attribute Localization for Generalized Zero-Shot Learning
    Yang, Shiqi
    Wang, Kai
    Herranz, Luis
    van de Weijer, Joost
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 872 - 876
  • [42] FREE: Feature Refinement for Generalized Zero-Shot Learning
    Chen, Shiming
    Wang, Wenjie
    Xia, Beihao
    Peng, Qinmu
    You, Xinge
    Zheng, Feng
    Shao, Ling
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 122 - 131
  • [43] Generalized Zero-Shot Learning via Disentangled Representation
    Li, Xiangyu
    Xu, Zhe
    Wei, Kun
    Deng, Cheng
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1966 - 1974
  • [44] A Dual Discriminator Method for Generalized Zero-Shot Learning
    Wei, Tianshu
    Huang, Jinjie
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 1599 - 1612
  • [45] Adaptive Confidence Smoothing for Generalized Zero-Shot Learning
    Atzmon, Yuval
    Chechik, Gal
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11663 - 11672
  • [46] Generalized Zero-Shot Learning via Synthesized Examples
    Verma, Vinay Kumar
    Arora, Gundeep
    Mishra, Ashish
    Rai, Piyush
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4281 - 4289
  • [47] Dissimilarity Representation Learning for Generalized Zero-Shot Recognition
    Yang, Gang
    Liu, Jinlu
    Xu, Jieping
    Li, Xirong
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 2032 - 2039
  • [48] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2606 - 2622
  • [49] Class-Incremental Generalized Zero-Shot Learning
    Sun, Zhenfeng
    Feng, Rui
    Fu, Yanwei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 38233 - 38247
  • [50] Isolation and distillation network for generalized zero-shot learning
    Liang Y.
    Cao W.
    Neural Computing and Applications, 2024, 36 (22) : 13935 - 13955