Residual Networks for Light Field Image Super-Resolution

被引:90
|
作者
Zhang, Shuo [1 ,2 ]
Lin, Youfang [1 ,2 ]
Sheng, Hao [3 ,4 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China
[2] CAAC, Key Lab Intelligent Passenger Serv Civil Aviat, Beijing, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing, Peoples R China
关键词
D O I
10.1109/CVPR.2019.01130
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Light field cameras are considered to have many potential applications since angular and spatial information is captured simultaneously. However, the limited spatial resolution has brought lots of difficulties in developing related applications and becomes the main bottleneck of light field cameras. In this paper, a learning-based method using residual convolutional networks is proposed to reconstruct light fields with higher spatial resolution. The view images in one light field are first grouped into different image stacks with consistent sub-pixel offsets and fed into different network branches to implicitly learn inherent corresponding relations. The residual information in different spatial directions is then calculated from each branch and further integrated to supplement high-frequency details for the view image. Finally, a flexible solution is proposed to super-resolve entire light field images with various angular resolutions. Experimental results on synthetic and real-world datasets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in both visual and numerical evaluations. Furthermore, the proposed method shows good performances in preserving the inherent epipolar property in light field images.
引用
收藏
页码:11038 / 11047
页数:10
相关论文
共 50 条
  • [21] Fusion and Allocation Network for Light Field Image Super-Resolution
    Zhang, Wei
    Ke, Wei
    Wu, Zewei
    Zhang, Zeyu
    Sheng, Hao
    Xiong, Zhang
    MATHEMATICS, 2023, 11 (05)
  • [22] Focal Aggregation Transformer for Light Field Image Super-Resolution
    Wang, Shunzhou
    Lu, Yao
    Xia, Wang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 524 - 538
  • [23] A Hybrid Approach for Image Super-Resolution of Light Field Images
    Farag, Saber
    Velisavljevic, Vladan
    Aggoun, Amar
    2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [24] Wide receptive field networks for single image super-resolution
    Yang, Haoran
    Tong, Jiahui
    Dou, Qingyu
    Xiao, Long
    Jeon, Gwanggil
    Yang, Xiaomin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 4859 - 4876
  • [25] Wide receptive field networks for single image super-resolution
    Haoran Yang
    Jiahui Tong
    Qingyu Dou
    Long Xiao
    Gwanggil Jeon
    Xiaomin Yang
    Multimedia Tools and Applications, 2022, 81 : 4859 - 4876
  • [26] High-Order Residual Network for Light Field Super-Resolution
    Meng, Nan
    Wu, Xiaofei
    Liu, Jianzhuang
    Lam, Edmund
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11757 - 11764
  • [27] Residual Dense Network for Image Super-Resolution
    Zhang, Yulun
    Tian, Yapeng
    Kong, Yu
    Zhong, Bineng
    Fu, Yun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2472 - 2481
  • [28] Light weight image super-resolution combining residual learning and layer attention
    Wu, Difan
    Zhang, Xuande
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10) : 1391 - 1401
  • [29] A survey for light field super-resolution
    Zhao, Mingyuan
    Sheng, Hao
    Yang, Da
    Wang, Sizhe
    Cong, Ruixuan
    Cui, Zhenglong
    Chen, Rongshan
    Wang, Tun
    Wang, Shuai
    Huang, Yang
    Shen, Jiahao
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [30] Light Field Super-Resolution: A Benchmark
    Cheng, Zhen
    Xiong, Zhiwei
    Chen, Chang
    Liu, Dong
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1804 - 1813