On the interior H-points of H-polygons

被引:0
|
作者
Feng, Xiao
Cao, Penghao
Yuan, Liping [1 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
关键词
lattice points; H-points; H-polygon; interior points; TRIANGLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An H-polygon is a simple polygon whose vertices are H-points, which are points of the set of vertices of a tiling of R-2 by regular hexagons of unit edge. Let G(v) denote the least possible number of H-points in the interior of a convex H-polygon K with v vertices. In this paper we prove that G(8) = 2, G(9) = 4, G(10) = 6 and G(v) >= left perpendicular v(3)/16 pi(2) - v/4 + 1/2 right perpendicular - 1 for all v >= 11, where [x] denotes the minimal integer more than or equal to x.
引用
收藏
页码:321 / 331
页数:11
相关论文
共 50 条
  • [11] A Note on H-Points in Köthe-Bochner Spaces
    Shutao Chen
    Ryszard Płuciennik
    Acta Mathematica Hungarica, 2002, 94 : 59 - 66
  • [12] A disproof of the conjecture about boundary H-points of H-triangles
    Wei X.
    Gao F.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 299 - 313
  • [13] ORLICZ SPACES WITHOUT STRONGLY EXTREME-POINTS AND WITHOUT H-POINTS
    HUDZIK, H
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (02): : 173 - 177
  • [14] A note on H-points in Kothe-Bochner spaces
    Chen, S
    Pluciennik, R
    ACTA MATHEMATICA HUNGARICA, 2002, 94 (1-2) : 59 - 66
  • [15] Lattice polygons with two interior lattice points
    X. Wei
    R. Ding
    Mathematical Notes, 2012, 91 : 868 - 877
  • [16] Lattice polygons with two interior lattice points
    Wei, X.
    Ding, R.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 868 - 877
  • [17] POINTS AND POLYGONS
    KIOSSEV, N
    COMPUTER JOURNAL, 1981, 24 (01): : 94 - 95
  • [18] On integer points in polygons
    L. A. Moshchevitina
    Mathematical Notes, 1999, 65 : 525 - 528
  • [19] ON INTEGER POINTS IN POLYGONS
    SKRIGANOV, M
    ANNALES DE L INSTITUT FOURIER, 1993, 43 (02) : 313 - 323
  • [20] On integer points in polygons
    Moshchevitina, LA
    MATHEMATICAL NOTES, 1999, 65 (3-4) : 525 - 528