Based on the Clustering of the Background for Hyperspectral Imaging Anomaly Detection

被引:0
|
作者
Li Xiaohui [1 ]
Zhao Chunhui [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin, Peoples R China
关键词
hyperspectral image; anomaly target detection; EM algorithm; RX algorithm; smooth background;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RX algorithm is the most classical algorithm in hyperspectral image anomaly detection algorithm, but the detection effect down significantly in a complicated and nonhomogeneous background. This paper use EM algorithm to smooth background by clustering the adjacent area of the pixel under test (PUT); in the process of detection, using the average of clustering replace the original background, in order to reduce the influence of the background complexity on the detection algorithm. With AVIRIS hyperspectral data, the simulation experiment has good detection effect.
引用
收藏
页码:1345 / 1348
页数:4
相关论文
共 50 条
  • [21] A robust background regression based score estimation algorithm for hyperspectral anomaly detection
    Zhao, Rui
    Du, Bo
    Zhang, Liangpei
    Zhang, Lefei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 122 : 126 - 144
  • [22] Difference-value background based on the subset of the category in hyperspectral anomaly detection
    Li, Xueyuan
    Lv, Yongsheng
    Zhao, Chunhui
    INFRARED PHYSICS & TECHNOLOGY, 2022, 123
  • [23] A Background-Purification-Based Framework for Anomaly Target Detection in Hyperspectral Imagery
    Zhang, Yan
    Fan, Yanguo
    Xu, Mingming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (07) : 1238 - 1242
  • [24] Hyperspectral anomaly detection based on adaptive background dictionary construction and collaborative representation
    Xu, Mingming
    Zhang, Jinhao
    Liu, Shanwei
    Sheng, Hui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3349 - 3369
  • [25] A KERNEL BACKGROUND PURIFICATION BASED ANOMALY TARGET DETECTION ALGORITHM FOR HYPERSPECTRAL IMAGERY
    Zhang, Yan
    Xu, Mingming
    Fan, Yanguo
    Zhang, Yuxiang
    Dong, Yanni
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 441 - 444
  • [26] A light CNN based on residual learning and background estimation for hyperspectral anomaly detection
    Zhang, Jiajia
    Xiang, Pei
    Shi, Jin
    Teng, Xiang
    Zhao, Dong
    Zhou, Huixin
    Li, Huan
    Song, Jiangluqi
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132
  • [27] Hyperspectral anomaly detection based on variational background inference and generative adversarial network
    Wang, Zhiwei
    Wang, Xue
    Tan, Kun
    Han, Bo
    Ding, Jianwei
    Liu, Zhaoxian
    PATTERN RECOGNITION, 2023, 143
  • [28] Hyperspectral Anomaly Detection Using Quantum Potential Clustering
    Tu, Bing
    Wang, Zhi
    Yang, Xianchang
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [29] Hyperspectral anomaly detection via density peak clustering
    Tu, Bing
    Yang, Xianchang
    Li, Nanying
    Zhou, Chengle
    He, Danbing
    PATTERN RECOGNITION LETTERS, 2020, 129 (129) : 144 - 149
  • [30] Anomaly Detection from Hyperspectral Images Using Clustering Based Feature Reduction
    Maryam Imani
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 1389 - 1397