Real-time implementation of the spiral algorithm for Shack-Hartmann wavefront sensor pattern sorting on an FPGA

被引:8
|
作者
Mauch, Steffen [1 ]
Reger, Johann [1 ]
机构
[1] Tech Univ Ilmenau, Control Engn Grp, POB 10 05 65, D-98684 Ilmenau, Germany
关键词
Adaptive optics; Wavefront sensing; Shack-Hartmann wavefront sensor; Spiral algorithm; Field Programmable Gate Array (FPGA); Dynamic range extension; Pattern sorting algorithm; ADAPTIVE OPTICS; DYNAMIC-RANGE;
D O I
10.1016/j.measurement.2016.06.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A real-time implementation of the spiral algorithm is proposed for sorting the spot patterns of a Shack-Hartmann Wavefront Sensor with an FPGA. The standard spiral algorithm is adapted to the end of rendering the algorithm real-time capable, deterministic, and efficient such that it finally be highly suited for implementation on an FPGA. Preserving the primary characteristics of the original spiral algorithm, i.e. high-range and accuracy, the modified algorithm additionally shows low-latency and high-throughput concerning the ordering and calculation of the centroids. Simulation and experimental results underscore that the algorithm yields excellent performance in view of run-time and robustness requirements while remaining relatively simple in its implementation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [41] Detection of phase singularities with a Shack-Hartmann wavefront sensor
    Chen, Mingzhou
    Roux, Filippus S.
    Olivier, Jan C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (07) : 1994 - 2002
  • [42] Accounting for focal shift in the Shack-Hartmann wavefront sensor
    Akondi, Vyas
    Dubra, Alfredo
    OPTICS LETTERS, 2019, 44 (17) : 4151 - 4154
  • [43] Atmospheric turbulence profiling with a Shack-Hartmann wavefront sensor
    Ogane, Hajime
    Akiyama, Masayuki
    Oya, Shin
    Ono, Yoshito H.
    ADAPTIVE OPTICS SYSTEMS VII, 2020, 11448
  • [44] Adaptive centroid optimization for Shack-Hartmann wavefront sensor
    Gan, Jinrui
    Jing, Wenbo
    Wang, Xiaoman
    2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2013, 9045
  • [45] Shack-Hartmann wavefront sensor with large dynamic range
    Xia, Mingliang
    Li, Chao
    Hu, Lifa
    Cao, Zhaoliang
    Mu, Quanquan
    Li Xuan
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (02)
  • [46] Shack-Hartmann wavefront sensor for laser beam analyses
    Zavalova, VY
    Kudryashova, AV
    HIGH-RESOLUTION WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS III, 2002, 4493 : 277 - 284
  • [47] ANALYSIS OF ACCURACY OF SHACK-HARTMANN WAVEFRONT SENSOR MEASUREMENTS
    Zavalova, V. E.
    Aleksandrov, A. G.
    Kudryashov, A. V.
    Rukosuev, A. L.
    Sheldakova, Y. V.
    Romanov, P. N.
    CAOL 2008: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ADVANCED OPTOELECTRONICS AND LASERS, 2008, : 162 - 164
  • [48] Incoherent holography with the use of Shack-Hartmann wavefront sensor
    Gorelaya, A. V.
    Lukin, V. P.
    Sevryugin, A. A.
    Shubenkova, E. V.
    Venediktov, V. Yu.
    HOLOGRAPHY: ADVANCES AND MODERN TRENDS IV, 2015, 9508
  • [49] Electron Multiplying CMOS as Shack-Hartmann wavefront sensor
    Buton, C.
    Fereyre, P.
    Fournier, M.
    Mayer, F.
    Barbier, R.
    HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VII, 2016, 9915
  • [50] Efficient Method of Shack-Hartmann Wavefront Sensor Assembly
    Zhou Xiaobin
    Luan Yadong
    Zhou Ke
    Zhang Xunzhi
    SECOND INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2017, 10256