Construction of mesoporous CuMn2O4/g-C3N4 heterojunctions as effective photocatalysts for reduction and removal of mercury ions

被引:13
|
作者
Albukhari, Soha M. [1 ]
Alsheheri, Soad Z. [1 ]
Mahmoud, M. H. H. [2 ]
Ismail, Adel A. [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Chem Dept, POB 80200, Jeddah 21589, Saudi Arabia
[2] Taif Univ, Coll Sci, Dept Chem, POB 11099, At Taif 21944, Saudi Arabia
[3] Kuwait Inst Sci Res KISR, Energy & Bldg Res Ctr, Nanotechnol & Adv Mat Program, POB 24885, Safat 13109, Kuwait
关键词
GRAPHITIC CARBON NITRIDE; HYDROGEN-PRODUCTION; NANOPARTICLES; WATER; G-C3N4; HG(II); PHASE; PHOTOREDUCTION; DEGRADATION; PERFORMANCE;
D O I
10.1007/s10854-021-07284-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, CuMn2O4/g-C3N4 photocatalysts with variations of CuMn2O4 NPs percentages (0.5-2%) have been performed as effective photocatalyst for reduction of Hg(II) ions during illumination by visible light. Well-crystalline spinel CuMn2O4 NPs were fabricated, and they were distributed onto g-C3N4 nanosheets with a uniform size of similar to 10 nm. The coupling CuMn2O4/g-C3N4 photocatalyst is much better than that of bare g-C3N4 and CuMn2O4. Notably, the reduction efficiency of 1.5% CuMn2O4/g-C3N4 photocatalyst was enhanced 3 and 9 times contrasted with bare CuMn2O4 and g-C3N4. The rate constant of 1.5% CuMn2O4/g-C3N4 photocatalyst was promoted by 9.6- and 6.2-folds larger than bare g-C3N4 and CuMn2O4. Significantly, the construction of heterojunction CuMn2O4/C3N4 photocatalyst enhanced the absorption in visible light and improved the carrier separation and generation. There was no significant loss in Hg(II) reduction after five successive cycles of experiments, indicating that CuMn2O4/g-C3N4 exhibited outstanding photocatalytic stability. The procedure approach in the present work is anticipated for constructing nanocomposites with advanced properties and novel morphologies in photocatalysis, electrochemical, and gas sensing applications.
引用
收藏
页码:190 / 202
页数:13
相关论文
共 50 条
  • [41] Rationally construction of Dy2O3/g-C3N4 heterojunctions with largely enhanced photocatalytic hydrogen evolution activity
    Chen, Yang
    Ren, Dan
    Deng, Changkui
    Zhong, Junbo
    Dou, Lin
    Huang, Shengtian
    MATERIALS RESEARCH BULLETIN, 2024, 179
  • [42] Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance
    Yuan, Yuan
    Huang, Gui-Fang
    Hu, Wang-Yu
    Xiong, Dan-Ni
    Zhou, Bing-Xin
    Chang, Shengli
    Huang, Wei-Qing
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 106 : 1 - 9
  • [43] Fabrication of CuMn2O4/Co3O4 nanocomposite heterojunctions for efficacious visible light-induced degradation of antibiotics
    Almenia, Sumaya H.
    Ismail, Adel A.
    Alzahrani, Khalid A.
    Aljahdali, Mutlaq
    CERAMICS INTERNATIONAL, 2023, 49 (08) : 13227 - 13237
  • [44] The synthesis of Cu-TCPP MOF/g-C3N4 heterojunctions as efficient photocatalysts for hydrogen generation
    Lu, Meihui
    Dong, Aichen
    Li, Xinyang
    Liu, Xuanqi
    Zhang, Ziqing
    Tian, Tao
    Jing, Liqiang
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (44) : 20336 - 20343
  • [45] Construction of S-scheme Co3O4/g-C3N4 heterojunctions with boosted photocatalytic H2 production performance
    Xu, Zhengdong
    Zhong, Junbo
    Chen, Jiufu
    Li, Minjiao
    Zeng, Lei
    Yang, Hao
    SURFACES AND INTERFACES, 2023, 38
  • [46] Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Papailias, Ilias
    Todorova, Nadia
    Giannakopoulou, Tatiana
    Dallas, Panagiotis
    Devlin, Eamonn
    Ioannidis, Nikolaos
    Trapalis, Christos
    PHOTOCHEM, 2021, 1 (03): : 462 - 476
  • [47] Co3O4 Nanosheet/g-C3N4 Hybrid Photocatalysts for Promoted H2 Evolution
    Chen, Shuhang
    Wang, Wentao
    Hou, Ying
    Hao, Yachao
    Zhao, Yangcan
    Wang, Siyan
    Meng, Jianfang
    Xu, Hongyan
    ACS APPLIED NANO MATERIALS, 2023, 6 (10) : 8717 - 8725
  • [48] T-mode adsorption and photoelectrocatalysis degradation for acyclovir on CuMn2O4@WO3/g-C3N4 electrode
    Liu, Yuting
    Gao, Changfei
    Liu, Lifen
    Wang, Hongbo
    CHEMICAL ENGINEERING JOURNAL, 2023, 464
  • [49] Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction
    Koci, K.
    Reli, M.
    Troppova, I.
    Sihor, M.
    Kupkova, J.
    Kustrowski, P.
    Praus, P.
    APPLIED SURFACE SCIENCE, 2017, 396 : 1685 - 1695
  • [50] Advancements and challenges in g-C3N4/ZnIn2S4 heterojunction photocatalysts
    Lu, Yongjun
    Zhuang, Zanyong
    Li, Lingyun
    Chen, Fei-Fei
    Wei, Peishu
    Yu, Yan
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (07) : 4718 - 4745