Auto-regressive model based input and parameter estimation for nonlinear finite element models

被引:33
|
作者
Castiglione, Juan [1 ]
Astroza, Rodrigo [1 ]
Azam, Saeed Eftekhar [2 ]
Linzell, Daniel [2 ]
机构
[1] Univ Andes, Fac Engn & Appl Sci, Bogota, Colombia
[2] Univ Nebraska, Dept Civil Engn, Lincoln, NE 68583 USA
基金
美国国家科学基金会;
关键词
Model updating; Input estimation; Finite element model; Kalman filter; Auto-regressive model; MINIMUM-VARIANCE INPUT; EXTENDED KALMAN FILTER; STATE ESTIMATION; STRUCTURAL SYSTEMS; FORCE IDENTIFICATION; DAMAGE DETECTION; EARTHQUAKE; SCHEME;
D O I
10.1016/j.ymssp.2020.106779
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A novel framework to accurately estimate nonlinear structural model parameters and unknown external inputs (i.e., loads) using sparse sensor networks is proposed and validated. The framework assumes a time-varying auto-regressive (TAR) model for unknown loads and develops a strategy to simultaneously estimate those loads and parameters of the nonlinear model using an unscented Kalman filter (UKF). First, it is confirmed that a Kalman filter (KF) allows to estimate TAR parameters for a measured, earthquake, acceleration time-history. The KF-based framework is then coupled to an UKF to jointly identify unmeasured inputs and nonlinear finite element (FE) model parameters. The proposed approach systematically assimilates different structural response quantities to estimate TAR and FE model parameters and, as a result, updates the FE model and unknown external excitation estimates. The framework is validated using simulated experiments on a realistic three-dimensional nonlinear steel frame subjected to unknown seismic ground motion. It is demonstrated that assuming relatively low order TAR model for the unknown input leads to precise reconstruction and unbiased estimation of nonlinear model parameters that are most sensitive to measured system response. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Auto-Regressive Models of Non-Stationary Time Series with Finite Length
    费万春
    白伦
    Tsinghua Science and Technology, 2005, (02) : 162 - 168
  • [22] Identification and control of nonlinear systems using PieceWise Auto-Regressive eXogenous models
    Lassoued, Zeineb
    Abderrahim, Kamel
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (14) : 4050 - 4062
  • [23] Research of Wind Power Prediction Based on the Auto-Regressive Model
    Feng, L.
    Liang, C. H.
    Huang, H.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ENERGY ENGINEERING (PEEE 2015), 2015, 20 : 61 - 64
  • [24] Comparison of auto-regressive, non-stationary excited signal parameter estimation methods
    Sasou, A
    Goto, M
    Hayamizu, S
    Tanaka, K
    MACHINE LEARNING FOR SIGNAL PROCESSING XIV, 2004, : 295 - 304
  • [25] City fire forecasts and analysis based on nonlinear auto-regressive time-series model
    Liu, Shengpeng
    Zhang, Ye
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS, PTS 1-4, 2013, 241-244 : 1550 - +
  • [26] Parameter stability and semiparametric inference in time varying auto-regressive conditional heteroscedasticity models
    Truquet, Lionel
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (05) : 1391 - 1414
  • [27] Time-varying parameter auto-regressive models for autocovariance nonstationary time series
    Fei WanChun
    Bai Lun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (03): : 577 - 584
  • [28] Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
    Mengyun Huang
    Wei Li
    Zhangyun Liu
    Linghao Cheng
    Bai-Ou Guan
    Photonic Sensors, 2018, 8 : 114 - 118
  • [29] Time-varying parameter auto-regressive models for autocovariance nonstationary time series
    WanChun Fei
    Lun Bai
    Science in China Series A: Mathematics, 2009, 52 : 577 - 584
  • [30] Time-varying parameter auto-regressive models for autocovariance nonstationary time series
    FEI WanChun BAI Lun College of Textile and Clothing Engineering Suzhou University Suzhou China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (03) : 577 - 584