Quantum circuit complexity of one-dimensional topological phases
被引:44
|
作者:
Huang, Yichen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
Huang, Yichen
[1
]
Chen, Xie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
CALTECH, Dept Phys, Pasadena, CA 91125 USA
CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USAUniv Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
Chen, Xie
[1
,2
,3
]
机构:
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
MATRIX PRODUCT STATES;
BOND GROUND-STATES;
SPIN CHAINS;
SYMMETRY-BREAKING;
ANTIFERROMAGNETS;
GAP;
D O I:
10.1103/PhysRevB.91.195143
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Topological quantum states cannot be created from product states with local quantum circuits of constant depth and are in this sense more entangled than topologically trivial states, but how entangled are they? Here we quantify the entanglement in one-dimensional topological states by showing that local quantum circuits of linear depth are necessary to generate them from product states. We establish this linear lower bound for both bosonic and fermionic one-dimensional topological phases and use symmetric circuits for phases with symmetry. We also show that the linear lower bound can be saturated by explicitly constructing circuits generating these topological states. The same results hold for local quantum circuits connecting topological states in different phases.
机构:
Shahrekord Univ, Fac Sci, Shahrekord 8818634141, Iran
Inst Res Fundamental Sci IPM, Sch Phys, Tehran 193955531, IranShahrekord Univ, Fac Sci, Shahrekord 8818634141, Iran
Mosadeq, Hamid
Asgari, Reza
论文数: 0引用数: 0
h-index: 0
机构:
Inst Res Fundamental Sci IPM, Sch Phys, Tehran 193955531, IranShahrekord Univ, Fac Sci, Shahrekord 8818634141, Iran