Harnessing intercellular signals to engineer the soil microbiome

被引:2
|
作者
Connolly, Jack A. [1 ]
Harcombe, William R. [2 ,3 ]
Smanski, Michael J. [2 ,4 ]
Kinkel, Linda L. [2 ,5 ]
Takano, Eriko [1 ]
Breitling, Rainer [1 ]
机构
[1] Univ Manchester, Fac Sci & Engn, Manchester Synthet Biol Res Ctr SYNBIOCHEM, Manchester Inst Biotechnol,Sch Nat Sci,Dept Chem, Manchester M1 7DN, Lancs, England
[2] Univ Minnesota, BioTechnol Inst, St Paul, MN 55108 USA
[3] Univ Minnesota, Dept Evolut & Behav, Twin Cities St Paul, MN 55108 USA
[4] Univ Minnesota, Dept Biochem Mol Biol & Biophys, St Paul, MN 55108 USA
[5] Univ Minnesota, Dept Plant Pathol, St Paul, MN 55108 USA
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会; 英国科研创新办公室;
关键词
REGULATING ANTIBIOTIC PRODUCTION; STREPTOMYCES-COELICOLOR; NITROGEN-FIXATION; GENE-CLUSTER; PLANT; RHIZOSPHERE; MOLECULES; BACTERIA; GROWTH; BIOSYNTHESIS;
D O I
10.1039/d1np00034a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Covering: Focus on 2015 to 2020 Plant and soil microbiomes consist of diverse communities of organisms from across kingdoms and can profoundly affect plant growth and health. Natural product-based intercellular signals govern important interactions between microbiome members that ultimately regulate their beneficial or harmful impacts on the plant. Exploiting these evolved signalling circuits to engineer microbiomes towards beneficial interactions with crops is an attractive goal. There are few reports thus far of engineering the intercellular signalling of microbiomes, but this article argues that it represents a tremendous opportunity for advancing the field of microbiome engineering. This could be achieved through the selection of synergistic consortia in combination with genetic engineering of signal pathways to realise an optimised microbiome.
引用
收藏
页码:311 / 324
页数:14
相关论文
共 50 条
  • [31] Harnessing machine learning for development of microbiome therapeutics
    McCoubrey, Laura E.
    Elbadawi, Moe
    Orlu, Mine
    Gaisford, Simon
    Basit, Abdul W.
    GUT MICROBES, 2021, 13 (01) : 1 - 20
  • [32] Harnessing the microbiome to regulate systemic innate immunity
    Mihori, Saki
    Nichols, Frank
    Provatas, Anthony
    Blesso, Christopher N.
    Clark, Robert B.
    JOURNAL OF IMMUNOLOGY, 2023, 210 (01):
  • [33] Superluminal signals: an engineer's perspective
    Sauter, T
    PHYSICS LETTERS A, 2001, 282 (03) : 145 - 151
  • [34] Harnessing biological motors to engineer systems for nanoscale transport and assembly
    Goel, Anita
    Vogel, Viola
    NATURE NANOTECHNOLOGY, 2008, 3 (08) : 465 - 475
  • [35] Harnessing clonal gametes in hybrid crops to engineer polyploid genomes
    Wang, Yazhong
    Fuentes, Roven Rommel
    van Rengs, Willem M. J.
    Effgen, Sieglinde
    Zaidan, Mohd Waznul Adly Mohd
    Franzen, Rainer
    Susanto, Tamara
    Fernandes, Joiselle Blanche
    Mercier, Raphael
    Underwood, Charles J.
    NATURE GENETICS, 2024, 56 (06) : 1075 - 1079
  • [36] Harnessing Systems Biology Approaches to Engineer Functional Microvascular Networks
    Sefcik, Lauren S.
    Wilson, Jennifer L.
    Papin, Jason A.
    Botchwey, Edward A.
    TISSUE ENGINEERING PART B-REVIEWS, 2010, 16 (03) : 361 - 370
  • [37] Quantifying noise levels of intercellular signals
    Wang, Kai
    Rappel, Wouter-Jan
    Kerr, Rex
    Levine, Herbert
    PHYSICAL REVIEW E, 2007, 75 (06):
  • [38] Control of pancreatic development by intercellular signals
    Duvillie, Bertrand
    Stetsyuk, Volodymyr
    Filhoulaud, Gaelle
    Guillemain, Ghislaine
    Scharfmann, Raphael
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2008, 36 : 276 - 279
  • [39] β-cell development: the role of intercellular signals
    Scharfmann, R.
    Duvillie, B.
    Stetsyuk, V.
    Attali, M.
    Filhoulaud, G.
    Guillemain, G.
    DIABETES OBESITY & METABOLISM, 2008, 10 : 195 - 200
  • [40] Harnessing Biomaterials to Engineer the Lymph Node Microenvironment for Immunity or Tolerance
    Andorko, James I.
    Hess, Krystina L.
    Jewell, Christopher M.
    AAPS JOURNAL, 2015, 17 (02): : 323 - 338