Identification and classification of multiple reflections with self-organizing maps

被引:15
|
作者
Essenreiter, R
Karrenbach, M
Treitel, S
机构
[1] Univ Karlsruhe, Inst Geophys, D-76187 Karlsruhe, Germany
[2] TriDekon Inc, Tulsa, OK 74103 USA
关键词
D O I
10.1046/j.1365-2478.2001.00261.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Artificial neural networks can be used effectively to identify and classify multiple events in a seismic data set. We use a specialized neural network, a self-organizing map (SOM), that tries to establish rules for the characterization of the physical problem. Selected seismic data attributes from CMP gathers are used as input patterns, such that the SOM arranges the data to form clusters in an abstract space. We show with synthetic and real data how the SOM can identify and classify primaries and multiples, and how it can classify the various types of multiple corresponding to a certain generating mechanism in the subsurface.
引用
收藏
页码:341 / 352
页数:12
相关论文
共 50 条
  • [21] CLASSIFICATION OF COURSE CONTENTS BY USING SELF-ORGANIZING MAPS
    Alpdogan, Yilmaz
    Bilge, Hasan Sakir
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2009, 24 (02): : 303 - 310
  • [22] Identification of lithofacies using Kohonen self-organizing maps
    Chang, HC
    Kopaska-Merkel, DC
    Chen, HC
    COMPUTERS & GEOSCIENCES, 2002, 28 (02) : 223 - 229
  • [23] Multiple self-organizing maps: A hybrid learning scheme
    Cervera, E
    delPobil, AP
    NEUROCOMPUTING, 1997, 16 (04) : 309 - 318
  • [24] Multisource data fusion with multiple self-organizing maps
    Wan, WJ
    Fraser, D
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03): : 1344 - 1349
  • [25] Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps
    Suveges, M.
    Barblan, F.
    Lecoeur-Taibi, I.
    Prsa, A.
    Holl, B.
    Eyer, L.
    Kochoska, A.
    Mowlavi, N.
    Rimoldini, L.
    ASTRONOMY & ASTROPHYSICS, 2017, 603
  • [26] SOM of SOMs: Self-organizing map which maps a group of self-organizing maps
    Furukawa, T
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 391 - 396
  • [27] Catchment classification by runoff behaviour with self-organizing maps (SOM)
    Ley, R.
    Casper, M. C.
    Hellebrand, H.
    Merz, R.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (09) : 2947 - 2962
  • [28] Growing Self-Organizing Maps for Multi-label Classification
    Casarotto, Pedro Henrique
    Cerri, Ricardo
    INTELLIGENT SYSTEMS, BRACIS 2024, PT II, 2025, 15413 : 33 - 48
  • [29] Concurrent self-organizing maps for classification of multispectral satellite imagery
    Neagoe, VE
    Ropot, AD
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIV, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING III, 2002, : 126 - 131
  • [30] Electrical customers classification through the use of self-organizing maps
    Verdú, SV
    García, MO
    Franco, JG
    Encinas, N
    Lazaro, EG
    Molina, A
    Gabaldon, A
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, 2004, : 282 - 288